История создания периодической системы менделеева презентация. История открытия

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

ПОСЛЕДНИЕ ЭЛЕМЕНТЫ ПЕРИОДИЧЕСКОЙ СИСТЕМЫ ХИМИЧЕСКИХ ЭЛЕМЕНТОВ Д.И.МЕНДЕЛЕЕВА Химия

2 слайд

Описание слайда:

3 слайд

Описание слайда:

Элемент периодической системы Менделеева № 110-Дармштадтий Дармштадтий (лат. Darmstadtium, обозначение Ds; ранее Унуннилий) - искусственно синтезированный химический элемент VIII группы периодической системы, атомный номер 110. Атомная масса=281(г/моль) История. Элемент получил название по месту открытия. Впервые синтезирован 9 ноября 1994 в Центре исследованийтяжелых ионов, Дармштадт, С. Хофманном, В. Ниновым, Ф. П. Хессбергером, П. Армбрустером, Х. Фолгером, Г. Мюнценбергом, Х. Шоттом и другими. Обнаруженный изотоп имел атомную массу 269. Получение Изотопы дармштадтия были получены в результате ядерных реакций: Свойства Радиоактивен.

4 слайд

Описание слайда:

Элемент периодической системы Менделеева №111- Рентгений Рентге́ний (лат.Roentgenium, обозначение Rg; ранее унунуний,) - искусственно синтезированный химический элемент побочной подгруппы первой группы, седьмого периодапериодической системы, с атомным номером 111. Простое вещество рентгений - переходный металл. Атомная масса 280 (г/моль) История Элемент 111 был впервые синтезирован 8 декабря 1994 г. в немецком городе Дармштадте. Авторами первой публикации, были С. Хофманн, В. Нинов, Ф. П. Хессбергер, П. Армбрустер, Х. Фольгер, Г. Мюнценберг, Х. Шётт, А. Г. Попеко, А. В. Еремин, А. Н. Андреев, С. Саро, Р. Яник и М. Лейно. Помимо немецких физиков, в международную группу входили трое учёных из российского Объединенного института ядерных исследований. Первый синтез был проведён по реакции: 209Bi + 64Ni = 272Rg + n

5 слайд

Описание слайда:

Элемент периодической системы Менделеева №112- Коперниций Коперниций (лат. Copernicium, Cn; в качестве русского названия используется также коперникий) - 112-й химический элемент. Ядро наиболее стабильного из его известных изотопов, 285Cn, состоит из 112 протонов, 173 нейтронов и имеет период полураспада около 34 секунд. Относится к той же химической группе, что цинк, кадмий и ртуть. История Коперниций впервые синтезирован 9 февраля 1996 года в Институте тяжёлых ионов в Дармштадте, С. Хоффманном (S. Hofmann), В. Ниновым (V. Ninov), Ф. П. Хессбергером (F. P. Hessberger), П. Армбрустером (P. Armbruster), Х. Фолгером (H. Folger), Г. Мюнценбергом (G. Münzenberg) и другими. Название Учёные GSI предложили для 112-го элемента название Copernicium (Cn) в честь Николая Коперника. 19 февраля 2010 года, в день рождения Коперника,ИЮПАК официально утвердил название элемента. Ранее для него предлагались названия штрассманий St, венусий Vs, фриший Fs, гейзенбергий Hb, а также лаврентий Lv, виксхаузий Wi, гельмгольций Hh.

6 слайд

Описание слайда:

Элемент периодической системы Менделеева №113- Унунтрий Унунтрий (лат. Ununtrium, Uut) или эка-таллий - 113-й химический элемент III группыпериодической системы, атомный номер 113, атомная масса , наиболее устойчивыйизотоп 284Uut. История открытия В феврале 2004 года были опубликованы результаты экспериментов, проводившихся с 14 июля по 10 августа 2003 года, в результате которых был получен 113-й элемент. Исследования проводились в Объединённом институте ядерных исследований (Дубна, Россия) . Получение Изотопы унунтрия были получены в результате α-распада изотопов унунпентия: а также в результате ядерных реакций:

7 слайд

Описание слайда:

Элемент периодической системы Менделеева №114- Унунквадий Унунква́дий,официально предложено название флёровий(лат. Flerovium, Fl) - 114-й химический элемент IV группы периодической системы, атомный номер 114. Элемент радиоактивен. История Впервые элемент был получен в декабре 1998 года путём синтеза изотопов через реакцию слияния ядер кальция с ядрами плутония. Происхождение названия Официально предложенное, но не утверждённое, название флёровий или флеровийдано в честь российского физика Г. Н. Флёрова, руководителя группы, синтезировавшей элементы с номерами от 102 до 110. После согласовательных процедур между российскими и американскими учёными 1 декабря 2011 года в комиссию по номенклатуре химических соединений ИЮПАК было направлено предложение назвать 114-й элемент флёровием. Химические свойства В некоторых исследованияхбыли получены указания[ на то, что унунквадий по химическим свойствам похож не на свинец, а на благородные газы. Унунквадий предположительно способен проявлять в соединениях степень окисления +2 и +4, хотя поскольку устойчивость степени окисления +4 с ростом порядкового номера снижается, некоторые учёныепредполагают, что унунквадий не сможет проявлять её или сможет её проявлять только в жёстких условиях.

8 слайд

Описание слайда:

Элемент периодической системы Менделеева №115- Унунпентий Унунпе́нтий (лат. Ununpentium, Uup) или эка-висмут - 115-й химический элемент V группы периодической системы, атомный номер 115, атомная масса 288, наиболее стабильным является нуклид. Искусственно синтезированный элемент, в природе не встречается. История открытия В феврале 2004 года были опубликованы результаты экспериментов, проводившихся с 14 июля по 10 августа 2003 года, в результате которых был получен 115-ый элемент.Исследования проводились в Объединённом институте ядерных исследований (Дубна, Россия). Получение Изотопы унунпентия были получены в результате ядерных реакций:

9 слайд

Описание слайда:

Элемент периодической системы Менделеева №116- Унунгексий Унунге́ксий (лат. Ununhexium, Uuh), официально предложено название ливерморий(лат.Livermorium, Lv) - 116-й химический элемент VI группы периодической системы,атомный номер 116, атомная масса 293. История открытия Заявление об открытии элементов 116 и 118 в 1999 году в Беркли (США)[ оказалось ошибочным и даже фальсифицированным. Синтез по объявленной методике не был подтверждён в российском, немецком и японском центрах ядерных исследований, а затем и в самих США. Унунгексий открыт путём синтеза изотопов в 2000 г. в Объединённом институте ядерных исследований (Дубна, Россия). Название Официально предложенное, но не утверждённое, название ливерморий дано в честь города Ливермор (Калифорния), где располагается Ливерморская национальная лаборатория. Учёные ОИЯИ предложили для 116-ого элемента название московий - в честь Московской области. Получение Изотопы унунгексия были получены в результате ядерных реакций:

10 слайд

Описание слайда:

Элемент периодической системы Менделеева №117- Унунсептий Унунсе́птий (лат. Ununseptium, Uus) или эка-астат - временное наименование для химического элемента с атомным номером 117. Временное обозначение - Uus. Период полураспада - 78 миллисекунд.Галоген. Получение Был получен в Объединённом институте ядерных исследований в Дубне, Россия в 2009-2010 годах. Для синтеза элемента использовались реакции: Происхождение названия Слово «унунсептий» образовано из корней латинских числительных и буквально обозначает что-то наподобие «одно-одно-семий» (числительное «117-й» строится совсем иначе). В дальнейшем название будет изменено.

11 слайд

Описание слайда:

Элемент периодической системы Менделеева №118- Унуноктий Унуно́ктий (лат. Ununoctium, Uuo) или эка-радон - временное наименование для химического элемента с атомным номером 118, синтез изотопов которого был впервые осуществлён в 2002 и 2005 годах в Объединённом институте ядерных исследований (Дубна) в сотрудничестве с Ливерморской национальной лабораторией. Результаты этих экспериментов были опубликованы в 2006 году. Временное обозначение - Uuo. Элемент является самым тяжёлым неметаллом, который может существовать, и относится, вероятно, к инертным газам. История открытия Заявление об открытии элементов 116 и 118 в 1999 году в Беркли(США) оказалось ошибочным и даже фальсифицированным. Синтез по объявленной методике не был подтверждён в российском, немецком и японском центрах ядерных исследований, а затем и в США. Первое событие распада 118-го элемента наблюдалось в эксперименте, проведённом в ОИЯИ в феврале - июне 2002 года. Получение Унуноктий был получен в результате ядерной реакции:

12 слайд

Описание слайда:

Интересные факты: Элементы с номерами 110, 111 и 112 были открыты немецкими учеными еще в 1990-х годах. Предварительно им были присвоены труднопроизносимые имена унуннилий, унуниний и унубий. В пятницу ИЮПАК одобрил новые названия этих искусственно синтезированных элементов - дармштадтий, рентгений и коперниций. Официальные символы элементов в таблице Менделеева - Ds, Rg и Cn. Название 114-го и 116-го элементов пока не утверждено. В природе не существует элементов с атомными номерами (числом протонов в ядре атома) больше 92, то есть тяжелее урана. Более тяжелые элементы, например плутоний, могут нарабатываться в атомных реакторах, а элементы тяжелее 100-го (фермия) можно получать только на ускорителях, путем бомбардировки мишени тяжелыми ионами. При слиянии ядер мишени и «снаряда» и возникают ядра нового элемента. Где конец таблицы? Академик Оганесян в статье, опубликованной в журнале Pure and Applied Chemistry, пишет, что теория квантовой электродинамики и теория атома, созданная Резерфордом, допускает существования атомов с числом протонов в ядре, равном 170 и даже больше. То есть, теоретически, таблица Менделеева может продолжаться до 170-й клетки.

Слайд 1

Описание слайда:

Слайд 2

Описание слайда:

Слайд 3

Описание слайда:

Слайд 4

Описание слайда:

Предпосылки создания таблицы Предпосылки создания таблицы Величайшим вкладом, изменившим весь ход науки, была идея гениального русского ученого Дмитрия Ивановича Менделеева, поставившего перед собой цель разобраться во всем многообразии химических элементов и свести их в единую систему. Каким образом поставленная Менделеевым задача была решена? "Посвятив свои силы изучению вещества, я вижу в нем два таких признака или свойства: массу, занимающую пространство и проявляющуюся в весе, и индивидуальность, выраженную в химических превращениях". Отсюда, продолжал Д.И. Менделеев, "... невольно зарождается мысль о том, что между массою и химическими элементами должна быть связь, а так как масса вещества, хотя и не абсолютная, а лишь относительная, выражается окончательно в виде атомов, то надо искать соответствия между индивидуальными свойствами элементов и их атомными весами". Так, в бесконечном многообразии свойств, присущих различным веществам, Менделеев усмотрел то общее свойство, которое оказавшись присущим всех химическим элементам, привело его к открытию величайшего закона природы, ставшего руководящим законом не только для химиков и физиков, но и любых специалистов, занимающихся изучением вещества. Таким образом, присущим всем веществам свойством, оказался вес составляющих их атомов - атомный вес.

Слайд 5

Описание слайда:

Слайд 6

Описание слайда:

Слайд 7

Описание слайда:

В марте 1869г. Менделеев сообщил Русскому химическому обществу об открытом им законе в статье "Соотношение свойств с атомным весом элементов" и тогда же сформулировал основные положения открытого законе. Пользуясь законом, Менделеев предсказал и подробно описал свойства некоторых еще не известных элементов. Дальнейшие открытия химических элементов подтвердили правильность предсказаний Менделеева и поставили имя Менделеева на первое место в истории не только химии, но и всего естествознания. Всего Менделеевым было предсказано существование одиннадцати химических элементов, в том числе и таких, как полоний, радий, протактиний. В марте 1869г. Менделеев сообщил Русскому химическому обществу об открытом им законе в статье "Соотношение свойств с атомным весом элементов" и тогда же сформулировал основные положения открытого законе. Пользуясь законом, Менделеев предсказал и подробно описал свойства некоторых еще не известных элементов. Дальнейшие открытия химических элементов подтвердили правильность предсказаний Менделеева и поставили имя Менделеева на первое место в истории не только химии, но и всего естествознания. Всего Менделеевым было предсказано существование одиннадцати химических элементов, в том числе и таких, как полоний, радий, протактиний.

Слайд 1

Таблица Менделеева внутри нас.

Выполнил:

Слайд 2

Известно, что Д.И.Менделеев - создатель периодической системы элементов - свое главное открытие сделал во сне. Но даже ему не могло присниться, какое огромное количество элементов содержится в человеческом теле. Наш организм – настоящая химическая кладовая и химическая лаборатория. Более 50 элементов является его постоянным составляющим и участниками самых разных процессов. «Элементами жизни» называют основные составляющие не только человеческого организма, но вообще всего живого: кислород, углерод, водород и азот.

Слайд 3

Силы четыре, Соединяясь, Жизнь образуют, Мир создают.

Так писал, немецкий поэт Фридрих Шиллер, и это сущая правда. На 70% мы состоим из кислорода, 18 % массы человека составляет углерод, а 10% - водород.

Слайд 4

Присутствие в организме азота не столь значительно, но он тоже играет Огромную роль в нашей жизни. Хотя название «азот» переводится с греческого как «неживой», без него существование организмов невозможно. Этот элемент содержится во всех белках и нуклеотидах – важнейших биологических веществах.

В теле человека всё находится в строгом равновесии. Даже незначительное изменение может иметь опасные последствия. Особо чувствителен организм к увеличению или уменьшению содержания водорода, точнее иона H, от которого зависит кислотность внутренней среды.

Слайд 5

Кислород по праву считается олицетворением самой жизни. О нем в первую очередь вспоминают, когда говорят о дыхании. Это не только ритмичные движения грудной клетки, при которых воздух попадает в легкие. Главное происходит внутри каждой клетки. Там кислород участвует в химических реакциях. Конечный продукт – углекислый газ. Углерод, входящий в него, также один из тех элементов, без которых невозможна жизнь. Углеводы, белки, жиры, витамины – во всех них углерод играет в первую скрипку.

Слайд 6

Однако и остальные элементы нельзя отнести к второстепенным. В человеческом теле нет ничего такого, что было бы не нужно. Многие элементы представлены в организме – в микроскопических количествах – микроэлементы. Но роль их отнюдь не мала. Без них разладились бы все стройные химические связи организма. Медь Например медь содержится в ферментах, отвечающих за кроветворение, иммунитет, обмен углеводов. Участвует медь в обмене меланина – пигмента, от которого зависят цвет глаз, волос и кожи. Медь присутствует во всех органах, много их в печени, селезенке, головном мозге. Пополняются запасы этого элемента при употреблении в пищу рыбы, яиц, шпината, винограда, печени.

Слайд 7

Огромное влияние на образование крови оказывает и другой микроэлемент – железо. В организме человека ежедневно должно поступать хотя бы одна сотая грамма этого металла. Основная его функция состоит в переносе кислорода их легких к клеткам. Железо входит в состав гемоглобина. Чтобы запасы железа не иссякли, человек должен употреблять в пищу мясо, рыбу, печень, яйца, орехи.

Слайд 8

Еще один металл, необходимый нам для жизни, - цинк. Без него в организме не будет работать около сотни различных ферментов. Цинк нужен для нормального функционирования эндокринных желез, особенно поджелудочной, где он содержится в большом количестве. Важную роль играет цинк в процессах деления клеток и роста всего организма.

Слайд 9

Среди «металлов жизни» есть такие, которые определяют ход абсолютно всех процессов, протекающих в человеческом организме. Это кальций, калий и натрий. Кальций можно обнаружить во всех тканях и жидкостях тела. Около 99% его содержится в костях в виде фосфорных солей. Кальций придает костям прочность. Продукты, богатые кальцием, - сыры, молоко, творог. Калий и натрий присутствует в организме в растворенном, ионизированном виде. Калий – основной внутриклеточный ион, а натрий – внеклеточный. Во многом от концентрации в крови ионов калия зависит нормальная работа сердца.

Кальций, калий и натрий.

Слайд 10

Содержание в организме солей строго взаимосвязано. Их обмен Нормализует минералокортикоиды – гормоны из коркового вещества надпочечников. Изменение концентрации натрия может повлечь нарушение водяного обмена. Основной источник натрия для человека – хлорид натрия, или, проще, поваренная соль. Рассыпать соль считалось плохой приметой. Некогда на Руси говорили: «Соли не жалей, так есть веселей».Для нормальной работы организму достаточно всего 5г поваренной соли в сутки. Поваренная соль – это еще и хлор – один из важнейших неметаллов Нашей «лаборатории». Хлор участвует в образовании соляной кислоты – основного компонента желудочного сока.

Слайд 11

Фосфор входит в состав АТФ – молекулы, в которой спрятаны небывалые энергетические ресурсы. В костях и зубах содержится 80% фосфора. Считается, что он необходим также для умственной деятельности. Присутствие фосфора и его солей активизирует многие обменные процессы. Из пищевых продуктов особенного богаты фосфором морская рыба, молоко, мясо, яйца, орехи, злаки.

Слайд 12

А что же другие элементы?. Сосед серебра по таблице Менделеева – кадмий встречается в почках. Там же можно найти свинец и марганец. Марганец входит в состав ряда ферментов, участвующих в обмене витаминов С и В1, а также в жировом обмене.

Слайд 13

В теле человека присутствуют и хлор, и йод, и фтор, и бром, И другие элементы таблицы Менделеева. Невозможно рассказать про все химические элементы, работающие на благо человека, - их масса, и к тому же о многих еще далеко неизвестно. Непонятно, например зачем в организме присутствует уран. Неясна до конца роль драгоценных металлов – золота и серебра, которые содержатся внутри каждого из нас.

Слайд 14

И в очередной раз остается лишь восхититься мудрости, с которой в природе устроено все живое. Невероятные комбинации химических элементов образуют чудо, которые называется человеком.

Обязательный минимум знаний

при подготовке к ОГЭ по химии

Периодическая система Д.И. Менделеева и строение атома

учитель химии

Филиала МОУ СОШ с.Поима

Белинского района Пензенской области в с.Чернышево


  • Повторить основные теоретические вопросы программы 8 класса;
  • Закрепить знания о причинах изменения свойств химических элементов на основании положения в ПСХЭ Д.И. Менделеева;
  • Научить обоснованно объяснять и сравнивать свойства элементов, а также образованных ими простых и сложных веществ по положению в ПСХЭ;
  • Подготовить к успешной сдаче ОГЭ по химии


Порядковый номер химического элемента

показывает число протонов в ядре атома

(заряд ядра Z) атома этого элемента.

12 р +

Mg 12

МАГНИЙ

В этом заключается

его физический смысл

12 е -

Число электронов в атоме

равно числу протонов,

так как атом

электронейтрален


Закрепим!

Са 20

КАЛЬЦИЙ

20 р +

20 е -

32 р +

32е -

СЕРА


Закрепим!

Zn 30

ЦИНК

30 р +

30 е -

35 р +

35е -

БРОМ


Горизонтальные строки химических элементов - периоды

малые

большие

незавершенный


Вертикальные столбцы химических элементов - группы

главные

побочные


Пример записи схемы строения атома химического элемента

Число электронных слоев

в электронной оболочке атома равно номеру периода, в котором расположен элемент

Относительная атомная масса

(округленное до целого числа значение)

записывается в верхнем левом углу над

порядковым номером

11 Na

Заряд ядра атома (Z) натрия

Натрий: порядковый номер 11

(записывается в нижнем левом углу

рядом с символом химического элемента)

2∙ 1 2

2∙ 2 2

11е -

11р +

Количество нейтронов вычисляется

по формуле: N(n 0 ) = A r – N(p + )

12 n 0

Число электронов на внешнем уровне для элементов главных подгрупп равно номеру группы , в которой расположен элемент

Максимальное число электронов

на уровне вычисляется по формуле:

2n 2


Закрепим!

13 Al

Заряд ядра атома (Z) алюминия

2∙ 1 2

2∙ 2 2

13е -

13р +

14 n 0


Закрепим!

9 F

Заряд ядра атома (Z) фтора

2∙ 1 2

+

-

10 n 0



В пределах одного периода

1. Возрастают:

I II III IV V VI VII VIII

Li Be B C N O F Ne

+3 +4 +5 +6 +7 +8 +9 +10

2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8

  • Заряд атомного ядра
  • Число электронов во внешнем слое атомов
  • Высшая степень окисления элементов в соединениях

Li +1 Be +2 B +3 C +4 N +5

  • Электроотрицательность
  • Окислительные свойства
  • Неметаллические свойства простых веществ
  • Кислотные свойства высших оксидов и гидроксидов

В пределах одного периода

2. Уменьшаются:

I II III IV V VI VII VIII

Li Be B C N O F Ne

+3 +4 +5 +6 +7 +8 +9 +10

2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8

  • Радиус атома
  • Металлические свойства простых веществ
  • Восстановительные свойства:

Li - только восстановитель , С – и окислитель , и восстановитель ,

F – только окислитель

  • Основные свойства высших оксидов и гидроксидов:

LiOH – основание ,Be(OH) 2 амфотерный гидроксид,

HNO 3 - кислота


В пределах одного периода

3. Не изменяется:

I II III IV V VI VII VIII

Li Be B C N O F Ne

+3 +4 +5 +6 +7 +8 +9 +10

2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8

Число электронных слоёв

(энергетических уровней)

в атоме –

равно номеру периода


Закрепим!

В периодах

слева направо

заряд ядра атома

  • Увеличивается
  • Уменьшается
  • Не изменяется

Закрепим!

В периодах

справа налево

число энергетических уровней

  • Увеличивается
  • Уменьшается
  • Не изменяется
  • Сначала увеличивается, а затем уменьшается

Закрепим!

В периодах

слева направо

восстановительные свойства элемента

  • Усиливаются
  • Ослабевают
  • Не изменяются
  • Сначала ослабевают, а затем усиливаются

Закрепим!

Атомы химических элементов

алюминия и кремния

имеют одинаковое:

  • Число электронных слоёв;
  • Число электронов

Закрепим!

Атомы химических элементов

серы и хлора

имеют различное:

  • Значение зарядов ядер атомов;
  • Число электронов на внешнем слое;
  • Число электронных слоёв;
  • Общее число электронов

В пределах одной А группы

1. Возрастают:

  • Заряд атомного ядра
  • Число электронных слоёв в атоме
  • Радиус атома
  • Восстановительные свойства
  • Металлические свойства

простых веществ

  • Основные свойства высших оксидов и гидроксидов
  • Кислотные свойства (степень диссоциации) бескислородных кислот неметаллов

2 8 18 8 1


В пределах одной А группы

2. Уменьшаются:

  • Электроотрицательность;
  • Окислительные свойства;
  • Неметаллические свойства

простых веществ;

  • Прочность (устойчивость) летучих водородных соединений.

2 8 18 7

2 8 18 18 7


В пределах одной А группы

3. Не изменяются:

  • Число электронов во внешнем электронном слое
  • Степень окисления элементов в высших оксидах и гидроксидах (как правило, равная номеру группы)
  • Be +2 Mg +2 Ca +2 Sr +2

2 2

2 8 2

2 8 8 2

2 8 18 8 2


Закрепим!

  • В главных подгруппах

снизу вверх

заряд ядра атома

  • Увеличивается
  • Уменьшается
  • Не изменяется
  • Сначала увеличивается, а затем уменьшается

Закрепим!

В главных подгруппах

снизу вверх

число электронов на внешнем уровне

  • Увеличивается
  • Уменьшается
  • Не изменяется
  • Сначала увеличивается, а затем уменьшается

Закрепим!

В главных подгруппах

снизу вверх

окислительные свойства элемента

  • Усиливаются
  • Ослабевают
  • Не изменяется
  • Сначала увеличивается, а затем уменьшается

Закрепим!

Атомы химических элементов

углерода и кремния

имеют одинаковое:

  • Значение зарядов ядер атомов;
  • Число электронов на внешнем слое;
  • Число электронных слоёв;
  • Общее число электронов в атоме

Закрепим!

Атомы химических элементов

азота и фосфора

имеют различное:

  • Значение зарядов ядер атомов;
  • Число электронов на внешнем слое;
  • Число электронных слоёв;
  • Общее число электронов

  • § 36, тест стр. 268-272


  • Таблица Д.И. Менделеева http://s00.yaplakal.com/pics/pics_original/7/7/0/2275077.gif
  • Габриелян О.С. «Химия. 9 класс», - ДРОФА, М., - 2013, с. 267-268
  • Савельев А.Е. Основные понятия и законы химии. Химические реакции. 8 – 9 классы. – М.: ДРОФА, 2008, - с. 6-48.
  • Рябов М.А., Невская Е.Ю. «Тесты по химии» к учебнику О.С. Габриеляна «Химия. 9 класс». – М.: ЭКЗАМЕН, 2010, с. 5-7
краткое содержание других презентаций

«Внеклассное мероприятие по химии» - Придумайте четверостишия. Для чего применяют химические индикаторы. Поставьте в соответствие название вещества с формулой. Цели мероприятия. Закон сохранения масс. Основные законы химии. Выдающийся естествоиспытатель древности Плиний Старший. Петр Великий говорил: “Я предчувствую, что Россияне, когда–нибудь, а. Лабиринт пройден. Этот элемент называют королем живой природы. Соли каких катионов окрашивают пламя.

«Кристаллическая решётка вещества» - Закон постоянства состава веществ. Мотивация. Атомы. Макет кристаллической решетки. Дайте характеристику аморфным веществам. Подведение итогов. Лабораторный опыт. Твердые вещества. Кристалл. Вещества с атомной кристаллической решеткой. Агрегатное состояние веществ. Кристаллические решетки. Кристаллы серы. Шкала оценок. Познать сущее. Возгонка. Агрегатное состояние воды. Диктант. Ответьте на вопросы.

«Хлор» - Хлор - один из самых активных неметаллов. Образует соединения с другими галогенами. Молекула хлора. Хлор. Хлор – ядовитый газ желто-зеленого цвета с резким запахом. Применение хлора. Производство хлорорганических инсектицидов. Возбуждения. Химические свойства. Хлор в органике. Хлор растворяется вводе. Физические свойства. Минералы. Распространение в природе. Cu+Cl2=CuCl2. Получение. Строение атома.

«Нуклеиновые кислоты в клетке» - Задачи на комплементарность. Свойства генетического кода. Антикодоны. Состав и структура РНК. Полный оборот. Биологическая роль и-РНК. Строение и функции РНК. Эрвин Чаргафф. Фридрих Фишер. Содержание ДНК в клетке. Генетический код. Уотсон Джеймс Дьюи. Репликация ДНК. Дезоксирибонуклеиновая кислота. Молекулы ДНК. Структуры ДНК и РНК. Сходства. Приспособленность организма к среде обитания. Сахар. Нуклеиновые кислоты.

«Многообразие веществ» - Название углеводорода. Формулы веществ. Общая формула. Функциональная группа. Многообразие неорганических и органических веществ. Названия веществ. Название углевода. Название оксида. Установите соответствие. Сложные эфиры. Название вещества.

««Задачи» химия 11 класс» - Деление куба. Микрофотографии золотых нанотрубок. Образование одностенной трубки. Тепловой наномотор. Объемная структура алмаза. Структура графенового монослоя. Решение задач по нанохимии и нанотехнологии. Структура нанопроволоки. Применение наноматериалов. Два подхода к получению наночастиц. Обнаружение метастаза. Зависимость цвета золей золота (а) от размера частиц. Наночастица золота. Возможные структуры нанокластера.

Статьи по теме: