Влияет скорость реакции в химии. Урок"Скорость химической реакции.Факторы, влияющие на скорость химической реакции"

Скорость химической реакции

Скорость химической реакции - изменение количества одного из реагирующих веществ за единицу времени в единице реакционного пространства. Является ключевым понятием химической кинетики . Скорость химической реакции - величина всегда положительная, поэтому, если она определяется по исходному веществу (концентрация которого убывает в процессе реакции), то полученное значение умножается на −1.

Например для реакции:

выражение для скорости будет выглядеть так:

. Скорость химической реакции в каждый момент времени пропорциональна концентрациям реагентов, возведенным степени, равные их стехиометрическим коэффициентам .

Для элементарных реакций показатель степени при значении концентрации каждого вещества часто равен его стехиометрическому коэффициенту, для сложных реакций это правило не соблюдается. Кроме концентрации на скорость химической реакции оказывают влияние следующие факторы:

  • природа реагирующих веществ,
  • наличие катализатора ,
  • температура (правило Вант-Гоффа),
  • давление,
  • площадь поверхности реагирующих веществ.

Если мы рассмотрим самую простую химическую реакцию A + B → C, то мы заметим, что мгновенная скорость химической реакции величина непостоянная.

Литература

  • Кубасов А. А. Химическая кинетика и катализ .
  • Пригожин И., Дефей Р. Химическая термодинамика. Новосибирск: Наука, 1966. 510 с.
  • Яблонский Г. С., Быков В. И., Горбань А. Н., Кинетические модели каталитических реакций , Новосибирск: Наука (Сиб. отделение), 1983.- 255 c.

Wikimedia Foundation . 2010 .

  • Уэльские диалекты английского языка
  • Пила (серия фильмов)

Смотреть что такое "Скорость химической реакции" в других словарях:

    СКОРОСТЬ ХИМИЧЕСКОЙ РЕАКЦИИ - основное понятие химической кинетики. Для простых гомогенных реакций скорость химической реакции измеряют по изменению числа молей прореагировавшего вещества (при постоянном объеме системы) или по изменению концентрации любого из исходных веществ … Большой Энциклопедический словарь

    СКОРОСТЬ ХИМИЧЕСКОЙ РЕАКЦИИ - основное понятие хим. кинетики, выражающее отношение количества прореагировавшего вещества (в молях) к отрезку времени, за которое произошло взаимодействие. Поскольку при взаимодействии изменяются концентрации реагирующих веществ, скорость обычно … Большая политехническая энциклопедия

    скорость химической реакции - величина, характеризизующая интенсивность химической реакции. Скоростью образования продукта реакции называют количество этого продукта в результате реакции за единицу времени в единице объема (если реакция гомогенна) или на… …

    скорость химической реакции - основное понятие химической кинетики. Для простых гомогенных реакций скорость химической реакции измеряют по изменению числа молей прореагировавшего вещества (при постоянном объёме системы) или по изменению концентрации любого из исходных веществ … Энциклопедический словарь

    Скорость химической реакции - величина, характеризующая интенсивность реакции химической (См. Реакции химические). Скоростью образования продукта реакции называется количество этого продукта, возникающее в результате реакции за единицу времени в единице объёма (если… …

    СКОРОСТЬ ХИМИЧЕСКОЙ РЕАКЦИИ - осн. понятие хим. кинетики. Для простых гомогенных реакций С. х. р. измеряют по изменению числа молей прореагировавшего в ва (при пост. объёме системы) или по изменению концентрации любого из исходных в в или продуктов реакции (если объём системы …

    МЕХАНИЗМ ХИМИЧЕСКОЙ РЕАКЦИИ - Для сложных реакций, состоящих из неск. стадий (простых, или элементарных реакций), механизм это совокупность стадий, в результате к рых исходные в ва превращаются в продукты. Промежуточными в вами в этих реакциях могут выступать как молекулы,… … Естествознание. Энциклопедический словарь

    Реакции нуклеофильного замещения - (англ. nucleophilic substitution reaction) реакции замещения, в которых атаку осуществляет нуклеофил реагент, несущий неподеленную электронную пару. Уходящая группа в реакциях нуклеофильного замещения называется нуклеофуг. Все … Википедия

    Реакции химические - превращения одних веществ в другие, отличные от исходных по химическому составу или строению. Общее число атомов каждого данного элемента, а также сами химические элементы, составляющие вещества, остаются в Р. х. неизмененными; этим Р. х … Большая советская энциклопедия

    скорость волочения - линейная скорость движения металла на выходе из волоки, м/с. На современных волочильных машинах скорость волочения достигает 50 80 м/с. Однако даже при волочении проволоки скорость, как правило, не превышает 30 40 м/с. При… … Энциклопедический словарь по металлургии

Скорость химических реакций, ее зависимость от различных факторов

Гомогенные и гетерогенные химические реакции

Химические реакции протекают с различными скоростями: с малой скоростью — при образовании сталактитов и сталагмитов, со средней скоростью — при варке пищи, мгновенно — при взрыве. Очень быстро проходят реакции в водных растворах, практически мгновенно. Смешаем растворы хлорида бария и сульфата натрия — сульфат бария в виде осадка образуется немедленно. Быстро, но не мгновенно, горит сера, магний растворяется в соляной кислоте, этилен обесцвечивает бромную воду. Медленно образуется ржавчина на железных предметах, налет на медных и бронзовых изделиях, медленно гниет листва, разрушаются зубы.

Предсказание скорости химической реакции, а также выяснение ее зависимости от условий проведения процесса — задача химической кинетики — науки о закономерностях протекания химических реакций во времени.

Если химические реакции происходят в однородной среде, например, в растворе или в газовой фазе, то взаимодействие реагирующих веществ происходит во всем объеме. Такие реакции, как вы знаете, называют гомогенными .

Скорость гомогенной реакции ($v_{гомог.}$) определяется как изменение количества вещества в единицу времени в единице объема:

$υ_{гомог.}={∆n}/{∆t·V},$

где $∆n$ — изменение числа молей одного вещества (чаще всего исходного, но может быть и продукта реакции); $∆t$ — интервал времени (с, мин.); $V$ — объем газа или раствора (л).

Поскольку отношение количества вещества к объему представляет собой молярную концентрацию $С$, то

${∆n}/{V}=∆C.$

Таким образом, скорость гомогенной реакции определяется как изменение концентрации одного из веществ в единицу времени:

$υ_{гомог.}={∆C}/{∆t}[{моль}/{л·с}]$

если объем системы не меняется. Если реакция идет между веществами, находящимися в разных агрегатных состояниях (например, между твердым веществом и газом или жидкостью), или между веществами, неспособными образовывать гомогенную среду (например, между несмешивающимися жидкостями), то она проходит только на поверхности соприкосновения веществ. Такие реакции называют гетерогенными .

Скорость гетерогенной реакции определяется как изменение количества вещества в единицу времени на единице поверхности:

$υ_{гомог.}={∆C}/{∆t·S}[{моль}/{c·м^2}]$

где $S$ — площадь поверхности соприкосновения веществ ($м^2, см^2$).

Если при какой-либо протекающей реакции экспериментально измерять концентрацию исходного вещества в разные моменты времени, то графически можно отобразить ее изменение с помощью кинетической кривой для этого реагента.

Скорость реакции не является постоянной величиной. Мы указывали лишь некоторую среднюю скорость данной реакции в определенном интервале времени.

Представьте себе, что мы определяем скорость реакции

$H_2+Cl_2→2HCl$

а) по изменению концентрации $Н_2$;

б) по изменению концентрации $HCl$.

Одинаковые ли мы получим значения? Ведь из $1$ моль $Н_2$ образуется $2$ моль $HCl$, поэтому и скорость в случае б) окажется больше в два раза. Следовательно, значение скорости реакции зависит и от того, по какому веществу ее определяют.

Изменение количества вещества, по которому определяют скорость реакции, — это внешний фактор, наблюдаемый исследователем. По сути, все процессы осуществляются на микроуровне. Очевидно, для того, чтобы какие-то частицы прореагировали, они прежде всего должны столкнуться, причем столкнуться эффективно: не разлететься, как мячики, в разные стороны, а так, чтобы в частицах разрушились или ослабли старые связи и смогли образоваться новые, а для этого частицы должны обладать достаточной энергией.

Расчетные данные показывают, что, например, в газах столкновения молекул при атмосферном давлении исчисляются миллиардами за $1$ секунду, т.е. все реакции должны были бы идти мгновенно. Но это не так. Оказывается, что лишь очень небольшая доля молекул обладает необходимой энергией, приводящей к эффективному соударению.

Минимальный избыток энергии, который должна иметь частица (или пара частиц), чтобы произошло эффективное соударение, называют энергией активации $E_a$.

Таким образом, на пути всех частиц, вступающих в реакцию, имеется энергетический барьер, равный энергии активации $E_a$. Когда он мал, то находится много частиц, которые могут его преодолеть, и скорость реакции велика. В противном случае требуется толчок. Когда вы подносите спичку, чтобы зажечь спиртовку, вы сообщаете дополнительную энергию $E_a$, необходимую для эффективного соударения молекул спирта с молекулами кислорода (преодоление барьера).

В заключение сделаем вывод: многие возможные реакции практически не идут, т.к. высока энергия активации.

Это имеет огромное значение для нашей жизни. Представьте, что бы случилось, если бы все термодинамически разрешенные реакции могли идти, не имея никакого энергетического барьера (энергии активации). Кислород воздуха прореагировал бы со всем, что может гореть или просто окисляться. Пострадали бы все органические вещества, они превратились бы в углекислый газ $CO_2$ и воду $H_2O$.

Скорость химической реакции зависит от многих факторов. Основными из них являются: природа и концентрация реагирующих веществ, давление (в реакциях с участием газов), температура, действие катализаторов и поверхность реагирующих веществ в случае гетерогенных реакций. Рассмотрим влияние каждого из этих факторов на скорость химической реакции.

Температура

Вам известно, что при повышении температуры в большинстве случаев скорость химической реакции значительно возрастает. В XIX в. голландский химик Я. Х. Вант-Гофф сформулировал правило:

Повышение температуры на каждые $10°С$ приводит к увеличению скорости реакции в 2-4 раза (эту величину называют температурным коэффициентом реакции).

При повышении температуры средняя скорость молекул, их энергия, число столкновений увеличиваются незначительно, зато резко повышается доля активных молекул, участвующих в эффективных соударениях, преодолевающих энергетический барьер реакции.

Математически эта зависимость выражается соотношением:

$υ_{t_2}=υ_{t_1}γ^{{t_2-t_1}/{10}},$

где $υ_{t_1}$ и $υ_{t_2}$ — скорости реакции соответственно при конечной $t_2$ и начальной $t_1$ температурах, а $γ$ — температурный коэффициент скорости реакции, который показывает, во сколько раз увеличивается скорость реакции с повышением температуры на каждые $10°С$.

Однако для увеличения скорости реакции повышение температуры не всегда применимо, т.к. исходные вещества могут начать разлагаться, могут испаряться растворители или сами вещества.

Концентрация реагирующих веществ

Изменение давления при участии в реакции газообразных веществ также приводит к изменению концентрации этих веществ.

Чтобы осуществилось химическое взаимодействие между частицами, они должны эффективно столкнуться. Чем больше концентрация реагирующих веществ, тем больше столкновений и, соответственно, выше скорость реакции. Например, в чистом кислороде ацетилен сгорает очень быстро. При этом развивается температура, достаточная для плавления металла. На основе большого экспериментального материала в 1867 г. норвежцами К. Гульденбергом и П. Вааге и независимо от них в 1865 г. русским ученым Н. И. Бекетовым был сформулирован основной закон химической кинетики, устанавливающий зависимость скорости реакции от концентрации реагирующих веществ.

Скорость химической реакции пропорциональна произведению концентраций реагирующих веществ, взятых в степенях, равных их коэффициентам в уравнении реакции.

Этот закон называют также законом действующих масс.

Для реакции $А+В=D$ этот закон выражается так:

$υ_1=k_1·C_A·C_B$

Для реакции $2А+В=D$ этот закон выражается так:

$υ_2=k_2·C_A^2·C_B$

Здесь $С_А, С_В$ — концентрации веществ $А$ и $В$ (моль/л); $k_1$ и $k_2$ — коэффициенты пропорциональности, называемые константами скорости реакции.

Физический смысл константы скорости реакции нетрудно установить — она численно равна скорости реакции, в которой концентрации реагирующих веществ равны $1$ моль/л или их произведение равно единице. В таком случае ясно, что константа скорости реакции зависит только от температуры и не зависит от концентрации веществ.

Закон действующих масс не учитывает концентрации реагирующих веществ, находящихся в твердом состоянии, т.к. они реагируют на поверхности, и их концентрации обычно являются постоянными.

Например, для реакции горения угля

выражение скорости реакции должно быть записано так:

$υ=k·C_{O_2}$,

т. е. скорость реакции пропорциональна только концентрации кислорода.

Если же уравнение реакции описывает лишь суммарную химическую реакцию, проходящую в несколько стадий, то скорость такой реакции может сложным образом зависеть от концентраций исходных веществ. Эта зависимость определяется экспериментально или теоретически на основании предполагаемого механизма реакции.

Действие катализаторов

Можно увеличить скорость реакции, используя специальные вещества, которые изменяют механизм реакции и направляют ее по энергетически более выгодному пути с меньшей энергией активации. Их называют катализаторами (от лат. katalysis — разрушение).

Катализатор действует как опытный проводник, направляющий группу туристов не через высокий перевал в горах (его преодоление требует много сил и времени и не всем доступно), а по известным ему обходным тропам, по которым можно преодолеть гору значительно легче и быстрее. Правда, по обходному пути можно попасть не совсем туда, куда ведет главный перевал. Но иногда именно это и требуется! Именно так действуют катализаторы, которые называют селективными . Ясно, что нет необходимости сжигать аммиак и азот, зато оксид азота (II) находит применение в производстве азотной кислоты.

Катализаторы — это вещества, участвующие в химической реакции и изменяющие ее скорость или направление, но по окончании реакции остающиеся неизменными количественно и качественно.

Изменение скорости химической реакции или ее направления с помощью катализатора называют катализом . Катализаторы широко используют в различных отраслях промышленности и на транспорте (каталитические преобразователи, превращающие оксиды азота выхлопных газов автомобиля в безвредный азот).

Различают два вида катализа.

Гомогенный катализ , при котором и катализатор, и реагирующие вещества находятся в одном агрегатном состоянии (фазе).

Гетерогенный катализ , при котором катализатор и реагирующие вещества находятся в разных фазах. Например, разложение пероксида водорода в присутствии твердого катализатора оксида марганца (IV):

$2H_2O_2{→}↖{MnO_2(I)}2H_2O_{(ж)}+O_2(г)$

Сам катализатор не расходуется в результате реакции, но если на его поверхности адсорбируются другие вещества (их называют каталитическими ядами ), то поверхность становится неработоспособной, требуется регенерация катализатора. Поэтому перед проведением каталитической реакции тщательно очищают исходные вещества.

Например, при производстве серной кислоты контактным способом используют твердый катализатор — оксид ванадия (V) $V_2O_5$:

$2SO_2+O_2⇄2SO_3$

При производстве метанола используют твердый цинкохромовый катализатор ($8ZnO·Cr_2O_3×CrO_3$):

$CO_{(г)}+2H_{2(г)}⇄CH_3OH_{(г)}$

Очень эффективно работают биологические катализаторы — ферменты . По химической природе это белки. Благодаря им в живых организмах при невысокой температуре с большой скоростью протекают сложные химические реакции. Ферменты отличаются особой специфичностью, каждый из них ускоряет только свою реакцию, идущую в нужное время и в нужном месте с выходом, близким к $100%$. Создание аналогичных ферментам искусственных катализаторов — мечта химиков!

Вы, конечно, слышали и о других интересных веществах — ингибиторах (от лат. inhibere — задерживать). Они с высокой скоростью реагируют с активными частицами с образованием малоактивных соединений. В результате реакция резко замедляется и затем прекращается. Ингибиторы часто специально добавляют в разные вещества, чтобы предотвратить нежелательные процессы.

Например, с помощью ингибиторов стабилизируют растворы пероксида водорода, мономеры для предотвращения преждевременной полимеризации, соляную кислоту, чтобы была возможность ее транспортировки в стальной таре. Ингибиторы содержатся и в живых организмах, они подавляют различные вредные реакции окисления в клетках тканей, которые могут инициироваться, например, радиоактивным излучением.

Природа реагирующих веществ (их состав, строение)

Значение энергии активации является тем фактором, посредством которого сказывается влияние природы реагирующих веществ на скорость реакции.

Если энергия активации мала ($< 40$ кДж/моль), то это означает, что значительная часть столкновений между частицами реагирующих веществ приводит к их взаимодействию, и скорость такой реакции очень большая. Все реакции ионного обмена протекают практически мгновенно, ибо в этих реакциях участвуют разноименно заряженные ионы, и энергия активации в этих случаях ничтожно мала.

Если энергия активации велика ($> 120$ кДж/моль), то это означает, что лишь ничтожная часть столкновений между взаимодействующими частицами приводит к реакции. Скорость такой реакции поэтому очень мала. Например, протекание реакции синтеза аммиака при обычной температуре заметить практически невозможно.

Если энергии активации имеют промежуточные значения ($40-120$ кДж/моль), то скорости таких реакций будут средними. К таким реакциям можно отнести взаимодействие натрия с водой или этиловым спиртом, обесцвечивание бромной воды этиленом, взаимодействие цинка с соляной кислотой и др.

Поверхность соприкосновения реагирующих веществ

Скорость реакций, идущих на поверхности веществ, т.е. гетерогенных, зависит при прочих равных условиях от свойств этой поверхности. Известно, что растертый в порошок мел гораздо быстрее растворяется в соляной кислоте, чем равный по массе кусочек мела.

Увеличение скорости реакции объясняется, в первую очередь, увеличением поверхности соприкосновения исходных веществ, а также рядом других причин, например, разрушением структуры правильной кристаллической решетки. Это приводит к тому, что частицы на поверхности образующихся микрокристаллов значительно реакционноспособнее, чем те же частицы на гладкой поверхности.

В промышленности для проведения гетерогенных реакций используют кипящий слой, чтобы увеличить поверхность соприкосновения реагирующих веществ, подвод исходных веществ и отвод продуктов. Например, при производстве серной кислоты с помощью кипящего слоя проводят обжиг колчедана; в органической химии с применением кипящего слоя проводят каталитический крекинг нефтепродуктов и регенерацию (восстановление) вышедшего из строя (закоксованного) катализатора.

В жизни мы сталкиваемся с разными химическими реакциями. Одни из них, как ржавление железа, могут идти несколько лет. Другие, например, сбраживание сахара в спирт, - несколько недель. Дрова в печи сгорают за пару часов, а бензин в моторе - за долю секунды.

Чтобы уменьшить затраты на оборудование, на химических заводах повышают скорость реакций. А некоторые процессы, например, порчу пищевых продуктов, коррозию металлов, - нужно замедлить.

Скорость химической реакции можно выразить как изменение количества вещества (n, по модулю) в единицу времени (t) - сравните скорость движущегося тела в физике как изменение координат в единицу времени: υ = Δx/Δt . Чтобы скорость не зависела от объема сосуда, в котором протекает реакция, делим выражение на объем реагирующих веществ (v), т. е. получаем изменение количества вещества в единицу времени в единице объема, или изменение концентрации одного из веществ в единицу времени :


n 2 − n 1 Δn
υ = –––––––––– = –––––––– = Δс/Δt (1)
(t 2 − t 1) v Δt v

где c = n / v - концентрация вещества,

Δ (читается «дельта») - общепринятое обозначение изменения величины.

Если в уравнении у веществ разные коэффициенты, скорость реакции для каждого из них, рассчитанная по этой формуле будет различной. Например, 2 моль серни́стого газа прореагировали полностью с 1 моль кислорода за 10 секунд в 1 литре:

2SO 2 + O 2 = 2SO 3

Скорость по кислороду будет: υ = 1: (10 1) = 0,1 моль/л·с

Скорость по серни́стому газу: υ = 2: (10 1) = 0,2 моль/л·с - это не нужно запоминать и говорить на экзамене, пример приведен для того, чтобы не путаться, если возникнет этот вопрос.

Скорость гетерогенных реакций (с участием твердых веществ) часто выражают на единицу площади соприкасающихся поверхностей:


Δn
υ = –––––– (2)
Δt S

Гетерогенными называются реакции, когда реагирующие вещества находятся в разных фазах:

  • твердое вещество с другим твердым, жидкостью или газом,
  • две несмешивающиеся жидкости,
  • жидкость с газом.

Гомогенные реакции протекают между веществами в одной фазе:

  • между хорошо смешивающимися жидкостями,
  • газами,
  • веществами в растворах.

Условия, влияющие на скорость химических реакций

1) Скорость реакции зависит от природы реагирующих веществ . Проще говоря, разные вещества реагируют с разной скоростью. Например, цинк бурно реагирует с соляной кислотой, а железо довольно медленно.

2) Скорость реакции тем больше, чем выше концентрация веществ. С сильно разбавленной кислотой цинк будет реагировать значительно дольше.

3) Скорость реакции значительно повышается с повышением температуры . Например, для горения топлива необходимо его поджечь, т. е. повысить температуру. Для многих реакций повышение температуры на 10° C сопровождается увеличением скорости в 2–4 раза.

4) Скорость гетерогенных реакций увеличивается с увеличением поверхности реагирующих веществ . Твердые вещества для этого обычно измельчают. Например, чтобы порошки железа и серы при нагревании вступили в реакцию, железо должно быть в виде мелких опилок.

Обратите внимание, что в данном случае подразумевается формула (1) ! Формула (2) выражает скорость на единице площади, следовательно не может зависеть от площади.

5) Скорость реакции зависит от наличия катализаторов или ингибиторов.

Катализаторы - вещества, ускоряющие химические реакции, но сами при этом не расходующиеся. Пример - бурное разложение перекиси водорода при добавлении катализатора - оксида марганца (IV):

2H 2 O 2 = 2H 2 O + O 2

Оксид марганца (IV) остается на дне, его можно использовать повторно.

Ингибиторы - вещества, замедляющие реакцию. Например, для продления срока службы труб и батарей в систему водяного отопления добавляют ингибиторы коррозии. В автомобилях ингибиторы коррозии добавляются в тормозную, охлаждающую жидкость.

Еще несколько примеров.

Основные изучаемые понятия:

Скорость химических реакций

Молярная концентрация

Кинетика

Гомогенные и гетерогенные реакции

Факторы, влияющие на скорость химических реакций

Катализатор, ингибитор

Катализ

Обратимые и необратимые реакции

Химическое равновесие

Химические реакции – это реакции, в результате которых из одних веществ получаются другие (из исходных веществ образуются новые вещества). Одни химические реакции протекают за доли секунды (взрыв), другие же – за минуты, дни, годы, десятилетия и т.д.

Например: мгновенно с воспламенением и взрывом происходит реакция горения пороха, а реакция потемнения серебра или ржавления железа (коррозия) идёт так медленно, что проследить за её результатом можно лишь по истечении длительного времени.

Для характеристики быстроты химической реакции используют понятие скорости химической реакции – υ.

Скорость химической реакции – это изменение концентрации одного из реагирующих веществ реакции в единицу времени.

Формула вычисления скорости химической реакции:

υ = с 2 – с 1 = ∆ с
t 2 – t 1 ∆ t

с 1 – молярная концентрация вещества в начальный момент времени t 1

с 2 – молярная концентрация вещества в начальный момент времени t 2

так как скорость химической реакции характеризуется изменением молярной концентрации реагирующих веществ (исходных веществ), то t 2 > t 1 , а с 2 > с 1 (концентрация исходных веществ убывает по мере протекания реакции).

Молярная концентрация (с) – это количество вещества в единице объёма. Единица измерения молярной концентрации - [моль/л].

Раздел химии, который изучает скорость химических реакций, называется химической кинетикой . Зная её законы, человек может управлять химическими процессами, задавать им определённую скорость.

При расчёте скорости химической реакции необходимо помнить, что реакции делятся на гомогенные и гетерогенные.

Гомогенные реакции – реакции, которые протекают в одной среде (т.е. реагирующие вещества находятся в одинаковом агрегатном состоянии; например: газ + газ, жидкость + жидкость ).

Гетерогенные реакции – это реакции, протекающие между веществами в неоднородной среде (есть поверхность раздела фаз, т.е. реагирующие вещества находятся в разном агрегатном состоянии; например: газ + жидкость, жидкость + твёрдое вещество ).

Данная выше формула расчёта скорости химической реакции справедлива только для гомогенных реакций. Если реакция гетерогенная, то она может идти только на поверхности разделе реагирующих веществ.

Для гетерогенной реакции скорость вычисляется по формуле:

∆ν – изменение количества вещества

S – площадь поверхности раздела фаз

∆ t – промежуток времени, за который проходила реакция

Скорость химических реакций зависит от разных факторов: природы реагирующих веществ, концентрации веществ, температуры, катализаторов или ингибиторов.

Зависимость скорости реакций от природы реагирующих веществ.

Разберём данную зависимость скорости реакции на примере: опустим в две пробирки, в которых находится одинаковое количество раствора соляной кислоты (HCl), одинаковые по площади гранулы металлов: в первую пробирку гранулу железа (Fe), а во вторую – гранулу магния (Mg). В результате наблюдений, по скорости выделения водорода (Н 2), можно заметить, что с наибольшей скорость с соляной кислотой реагирует магний, чем железо . На скорость данной химической реакции оказывает влияние природа металла (т.е. магний более химически активный металл, чем железо, и поэтому он более энергично взаимодействует с кислотой).

Зависимость скорости химических реакций от концентрации реагирующих веществ.

Чем выше концентрация реагирующего (исходного) вещества, тем быстрее протекает реакция. И наоборот, чем меньше концентрация реагирующего вещества, тем медленнее идёт реакция.

Например: нальём в одну пробирку концентрированный раствор соляной кислоты (HCl), а в другую – разбавленный раствор соляной кислоты. Положим в обе пробирки по грануле цинка (Zn). Пронаблюдаем, по скорости выделения водорода, что реакция быстрее пойдёт в первой пробирке, т.к. концентрация соляной кислоты в ней больше, чем во второй пробирке.

Для определения зависимости скорости химической реакции применяют закон действия (действующих) масс : скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ, взятых в степенях, которые равны их коэффициентам.

Например, для реакции, протекающей по схеме : nA + mB → D , скорость химической реакции определяют по формуле:

υ х.р. = k · C (A) n · C (B) m , где

υ х.р - скорость химической реакции

C (A) – А

C (В) – молярная концентрация вещества В

n и m – их коэффициенты

k – константа скорости химической реакции (справочная величина).

Закон действия масс не распространяется на вещества, находящиеся в твёрдом состоянии, т.к. их концентрация постоянна (вследствие того, что они реагируют лишь на поверхности, которая остаётся неизменной).

Например: для реакции 2 Cu + O 2 = 2CuO скорость реакции определяют по формуле:

υ х.р. = k · C(O 2)

ЗАДАЧА: Константа скорости реакции 2А + В = D равна 0,005. вычислить скорость реакции при молярной концентрации вещества А = 0,6 моль/л, вещества В = 0,8 моль/л.

Зависимость скорости химической реакции от температуры .

Эта зависимость определяется правилом Вант – Гоффа (1884г.): при увеличении температура на каждые 10 С о скорость химической реакции увеличивается в среднем в 2 – 4 раза.

Так, взаимодействие водорода (Н 2) и кислорода (О 2) при комнатной температуре почти не происходит, так мала скорость этой химической реакции. Но при температуре 500 С о эта реакция протекает за 50 минут, а при температуре 700 С о – почти мгновенно.

Формула расчёта скорости химической реакции по правилу Вант – Гоффа:

где: υ t 1 и υ t 2 - скорости химических реакций при t 2 и t 1

γ – температурный коэффициент, который показывает во сколько раз увеличивается скорость реакции с повышением температуры на 10 С о.

Изменение скорости реакции:

2. Подставим данные из условия задачи в формулу:

Зависимость скорости реакций от специальных веществ – катализаторов и ингибиторов.

Катализатор – вещество, которое увеличивает скорость химической реакции, но само в ней не участвует.

Ингибитор – вещество, замедляющее химическую реакцию, но само в ней не участвующие.

Пример: в пробирку с раствором 3% перекиси водорода (Н 2 О 2), которую нагрели, внесём тлеющую лучину – она не загорится, т.к. скорость реакции разложения перекиси водорода на воду (Н 2 О) и кислород (О 2) очень мала, и образовавшегося кислорода недостаточно для проведения качественной реакции на кислород (поддержание горения). Теперь внесём в пробирку немного чёрного порошка оксида марганца (IV) (MnO 2) и увидим, что началось бурное выделение пузырьков газа (кислорода), а внесённая в пробирку тлеющая лучина ярко вспыхивает. MnO 2 – катализатор данной реакции, он ускорил скорость реакции, но сам в ней не участвовал (это можно доказать взвесив катализатор до и после проведения реакции – его масса не изменится).

Задания с комментариями и решениями

Пример 23. Увеличению скорости реакции, уравнение которой 2СО + O 2 = 2СO 2 , способствует

1) увеличение концентрации СО

2) уменьшение концентрации O 2

3) понижение давления

4) понижение температуры

Известно, что скорость химической реакции зависит, от следующих факторов:

Природы реагирующих веществ (при прочих равных условиях более активные вещества реагируют быстрее);

Концентрации реагирующих веществ (чем выше концентрация, тем выше скорость реакции);

Температуры (увеличение температуры приводит к ускорению реакций);

Присутствия катализатора (катализатор ускоряет процесс);

Давления (для реакций с участием газов увеличение давления равносильно увеличению концентрации, поэтому скорость реакций с ростом давления увеличивается);

Степени измельчения твердых веществ (чем больше степень измельчения, тем больше площадь поверхности соприкосновения твердых реагентов, и тем выше скорость реакции).

С учетом этих факторов проанализируем предложенные варианты ответов:

1) увеличение концентрации СО (исходного вещества) действительно приведет к увеличению скорости химической реакции;

2) уменьшение концентрации O 2 приведет не к увеличению, а к уменьшению скорости реакции;

3) снижение давления по своей сути то же самое, что и уменьшение концентрации реагентов, следовательно - скорость реакции тоже уменьшится;

4) снижение температуры всегда приводит к уменьшению скорости химической реакции.

Пример 24. Увеличению скорости реакции между железом и соляной кислотой способствует

1) добавление ингибитора

2) понижение температуры

3) повышение давления

4) увеличение концентрации НСl

Прежде всего, запишем уравнение реакции:

Проанализируем предложенные варианты ответов. Известно, что добавление ингибитора уменьшает скорость реакций, аналогичное влияние оказывает и уменьшение температуры. Изменение давления не сказывается на скорости данной реакции (т.к. среди реагентов нет газообразных веществ). Следовательно, для увеличения скорости реакции следует увеличить концентрацию одного из реагентов, а именно соляной кислоты.

Пример 25. На скорость реакции между уксусной кислотой и этанолом не влияет

1) катализатор

2) температура

3) концентрация исходных веществ

4) давление

Уксусная кислота и этанол - жидкости. Поэтому на скорость реакции между этими веществами изменение давления не влияет, т.к. этот фактор оказывает воздействие только на реакции с участием газообразных веществ.

Пример 26. С наибольшей скоростью с водородом реагирует


4) углерод

Углерод и сера относятся к малоактивным неметаллам. При нагревании их активность заметно возрастает, при высокой температуре газообразный водород будет взаимодействовать с твердой серой (температура плавления серы 444 °С) и твердым углеродом. Химическая активность галогенов намного больше, чем других неметаллов (при прочих равных условиях). Самый активный среди галогенов - фтор. Как известно, в атмосфере фтора сгорают даже такие устойчивые вещества, как вода и стекловолокно. И действительно, водород с хлором взаимодействуют или при нагревании, или при ярком освещении, а фтор с водородом взрывается в любых условиях (даже при очень низких температурах).

Задания для самостоятельной работы

79. С наибольшей скоростью соляная кислота взаимодействует с

2) гидроксидом натрия (р-р)

3) железом

4) карбонатом железа(II)

80. Скорость реакции увеличивается при

1) повышении концентрации СО

2) понижении температуры

3) повышении давления

4) повышении температуры

5) измельчении реагентов

81.

А. Взаимодействие азота с водородом быстрее осуществляется при высоком давлении.

Б. Скорость реакции зависит от температуры.

1) верно только А

2) верно только Б

3) верны оба утверждения

4) оба суждения неверны

82. С наибольшей скоростью при комнатной температуре взаимодействуют

83. Скорость реакции увеличится при

1) увеличении концентрации сернистого газа

2) повышении температуры

3) понижении температуры

4) увеличении давления

5) уменьшении концентрации кислорода

84. На скорость химической реакции между раствором серной кислоты и железом не оказывает влияния

1) увеличение концентрации кислоты

2) изменение объема сосуда

3) повышение температуры реакции

4) увеличение давления

5) измельчение железа

85. С наименьшей скоростью происходит реакция между водой и

1) натрием

2) кальцием

3) магнием

86. С наибольшей скоростью взаимодействуют

87. Скорость реакции, схема которой увеличивается при

1) повышении концентрации ионов железа

2) уменьшении концентрации ионов железа

3) понижении температуры

4) увеличении концентрации кислоты

5) измельчении железа

88. Верны ли следующие суждения о скорости химической реакции?

А. Скорость взаимодействия цинка с кислородом зависит от давления кислорода в системе.

Б. При увеличении температуры на 10°С скорость большинства реакций возрастает в 2-4 раза.

1) верно только А

2) верно, только Б

3) верны оба утверждения

4) оба суждения неверны

89. На скорость реакции не влияет изменение

1) концентрации соляной кислоты

2) давления

3) концентрации хлорида натрия

4) концентрации сульфита натрия

5) температуры

90. При обычных условиях с наибольшей скоростью протекает реакция, уравнение/схема которой

91. Верны ли следующие суждения о скорости химической реакции?

А. Взаимодействие кислорода с цинком протекает с большей скоростью, чем с медью.

Б. Скорость реакции в растворе зависит от концентрации реагентов.

1) верно только А

2) верно только Б

3) верны оба утверждения

4) оба суждения неверны

92. С наименьшей скоростью при комнатной температуре взаимодействуют

1) сульфат меди (р-р) и гидроксид натрия (р-р)

2) натрий и вода

3) кислород и цинк

4) серная кислота (р-р) и карбонат кальция (тв)

93. Верны ли следующие суждения о скорости химической реакции?

А. Взаимодействие цинка с соляной кислотой протекает с большей скоростью, чем с ортофосфорной кислой той же концентрации.

Б. Скорость реакции в растворе зависит от объёма сосуда, в котором проводят реакцию.

1) верно только А

2) верно только Б

3) верны оба утверждения

4) оба суждения неверны

Статьи по теме: