Солнечная батарея для дома своими руками. Солнечная батарея своими руками из подручных средств и материалов в домашних условиях – как собрать и изготовить солнечную батарею из диодов, транзисторов и фольги? Самодельная солнечная панель

Наверное, нет такого человека, который не хотел бы стать более независимым. Возможность полностью распоряжаться собственным временем, путешествовать, не зная границ и расстояний, не задумываться о жилищных и финансовых проблемах - вот что даёт ощущение настоящей свободы. Сегодня мы расскажем о том, как, используя солнечное излучение, снять с себя бремя энергетической зависимости. Как вы догадались, речь пойдёт о солнечных батареях. А если быть точнее, то о том, можно ли своими руками построить настоящую солнечную электростанцию.

История создания и перспективы использования

Идею превращения энергии Солнца в электричество человечество вынашивало давно. Первыми появились гелиотермальные установки, в которых перегретый сконцентрированными солнечными лучами пар вращал турбины генератора. Прямое преобразование стало возможным лишь в середине XIX века, после того, как француз Александр Эдмон Баккарель открыл фотоэлектрический эффект. Попытки создать на основании этого явления действующую солнечную ячейку увенчались успехом лишь полвека спустя, в лаборатории выдающегося русского учёного Александра Столетова. Полностью описать механизм фотоэлектрического эффекта удалось ещё позже - человечество обязано этим Альберту Энштейну. К слову, именно за эту работу он получил Нобелевскую премию.

Баккарель, Столетов и Энштейн - вот те учёные, которые заложили фундамент современной солнечной энергетики

О создании первого солнечного фотоэлемента на основе кристаллического кремния возвестили мир сотрудники компании Bell Laboratories в далёком апреле 1954 года. Эта дата, по сути, и является отправной точкой технологии, которая в скором времени сможет стать полноценной заменой углеводородному топливу.

Поскольку ток одной фотоэлектрической ячейки составляет миллиамперы, то для получения электроэнергии достаточной мощности их приходится соединять в модульные конструкции. Защищённые от внешнего воздействия массивы солнечных фотоэлементов и являются солнечной батареей (из-за плоской формы устройство нередко называют солнечной панелью).

Преобразование солнечного излучения в электричество имеет огромные перспективы, ведь на каждый квадратный метр земной поверхности приходится в среднем 4.2 кВт/час энергии в день, а это экономия практически одного барреля нефти в год. Изначально используемая лишь для космической отрасли технология уже в 80-х годах прошлого века стала настолько обыденной, что фотоэлементы стали использовать в бытовых целях - в качестве источника питания калькуляторов, фотоаппаратов, светильников и т. д. Параллельно создавались и «серьёзные» гелиоэлектрические установки. Закреплённые на крышах домов, они позволяли полностью отказаться от проводного электричества. Сегодня можно наблюдать рождение электростанций, представляющих собой многокилометровые поля из кремниевых панелей. Вырабатываемая ими мощность позволяет питать целые города, поэтому можно с уверенностью говорить о том, что будущее - за солнечной энергетикой.

Современные солнечные электростанции представляют собой многокилометровые поля фотоэлементов, способные снабжать электричеством десятки тысяч домов

Солнечная батарея: как это работает

После того как Энштейн описал фотоэлектрический эффект, миру открылась вся простота такого, казалось бы, сложного физического явления. В его основе лежит вещество, отдельные атомы которого находятся в неустойчивом состоянии. При «бомбардировке» фотонами света из их орбит выбиваются электроны - вот они-то и являются источниками тока.

Практически полвека фотоэффект не имел практического применения по одной простой причине - отсутствовала технология получения материалов с неустойчивой атомной структурой. Перспективы дальнейших исследований появились лишь с открытием полупроводников. Атомы этих материалов имеют либо избыток электронов (n-проводимость), или же испытывают в них нехватку (p-проводимость). При использовании двухслойной структуры со слоем n-типа (катод) и p-типа (анод), «обстрел» фотонами света выбивает электроны из атомов n-слоя. Покидая свои места, они устремляются на свободные орбиты атомов p-слоя и далее через подключённую нагрузку возвращаются на исходные позиции. Наверное, каждый из вас знает, что движение электронов в замкнутом контуре представляет собой электрический ток. Вот только заставить электроны перемещаться удаётся не благодаря магнитному полю, как в электрических генераторах, а за счёт потока частиц солнечного излучения.

Солнечная панель работает благодаря фотоэлектрическому эффекту, который был открыт ещё в начале XIX века

Поскольку мощность одного фотоэлектрического модуля недостаточна для питания электронных устройств, то для получения требуемого напряжения используется последовательное подключение множества ячеек. Что же касается силы тока, то её наращивают параллельным соединением определённого количества таких сборок.

Генерация электричества в полупроводниках напрямую зависит от количества солнечной энергии, поэтому фотоэлементы не только устанавливают под открытым небом, но и стараются сориентировать их поверхность перпендикулярно падающим лучам. А чтобы защитить ячейки от механических повреждений и атмосферного воздействия, их монтируют на жёстком основании и сверху защищают стеклом.

Классификация и особенности современных фотоэлементов

Первую солнечную ячейку изготовили на основе селена (Se), однако низкий КПД (менее 1%), быстрое старение и высокая химическая активность селеновых фотоэлементов вынуждали искать другие, более дешёвые и эффективные материалы. И они нашлись в лице кристаллического кремния (Si). Поскольку этот элемент периодической таблицы является диэлектриком, его проводимость обеспечили за счёт включений из различных редкоземельных металлов. В зависимости от технологии изготовления существует несколько типов кремниевых фотоэлементов:

  • монокристаллические;
  • поликристаллические;
  • из аморфного Si.

Первые изготавливаются методом срезания тончайших слоёв от слитков кремния самой высокой степени очистки. Внешне фотоэлементы монокристаллического типа выглядят как однотонные тёмно-синие стеклянные пластины с выраженной электродной сеткой. Их КПД достигает 19%, а срок службы составляет до 50 лет. И хоть производительность изготовленных на основе монокристаллов панелей постепенно падает, есть данные, что изготовленные более 40 лет назад батареи и сегодня сохраняют работоспособность, выдавая до 80% своей первоначальной мощности.

Монокристаллические солнечные ячейки имеют однородный тёмный цвет и срезанные углы - эти признаки не позволяют спутать их с другими фотоэлементами

В производстве поликристаллических фотоэлементов используют не такой чистый, но зато более дешёвый кремний. Упрощение технологии сказывается на внешнем виде пластин - они имеют не однородный оттенок, а более светлый узор, который образуют границы множества кристаллов. КПД таких солнечных ячеек немного ниже, чем у монокристаллических - не более 15%, а срок службы составляет до 25 лет. Надо сказать, что снижение основных эксплуатационных показателей абсолютно не сказалось на популярности поликристаллических фотоэлементов. Они выигрывают за счёт более низкой цены и не такой сильной зависимости от внешней загрязнённости, низкой облачности и ориентации на Солнце.

Поликристаллические фотоэлементы имеют более светлый синий оттенок и неоднородный рисунок - следствие того, что их структура состоит из множества кристаллов

Для солнечных батарей из аморфного Si используется не кристаллическая структура, а тончайший слой кремния, который напыляют на стекло или полимер. Хоть подобный метод производства и является самым дешёвым, такие панели имеют самый короткий срок жизни, причиной чему является выгорание и деградация аморфного слоя на солнце. Не радует этот тип фотоэлементов и производительностью - их КПД составляет не более 9% и во время эксплуатации существенно снижается. Использование солнечных батарей из аморфного кремния оправдано в пустынях - высокая солнечная активность нивелирует падение производительности, а бескрайние просторы позволяют размещать гелиоэлекростанции любой площади.

Возможность напылять кремниевую структуру на любую поверхность позволяет создавать гибкие солнечные панели

Дальнейшее развитие технологии производства фотоэлектрических элементов вызвано необходимостью в снижении цены и улучшении эксплуатационных характеристик. Максимальной производительностью и долговечностью сегодня обладают плёночные фотоэлементы:

  • на основе теллурида кадмия;
  • из тонких полимеров;
  • с использованием индия и селенида меди.

О возможности применения в самодельных устройствах тонкоплёночных фотоэлементов говорить пока ещё рано. Сегодня их выпуском занимается только несколько наиболее «продвинутых» в технологическом плане компаний, поэтому чаще всего гибкие фотоэлементы можно увидеть в составе готовых солнечных панелей.

Какие фотоэлементы лучше всего подходят для солнечной батареи и где их можно найти

Изготовленные кустарным способом солнечные панели всегда будут находиться на шаг позади своих заводских собратьев, и на то есть несколько причин. Во-первых, известные производители тщательно отбирают фотоэлементы, отсеивая ячейки с нестабильными или сниженными параметрами. Во-вторых, при изготовлении гелиоэлектрических батарей используется специальное стекло с повышенным светопропусканием и сниженной отражающей способностью - найти такое в продаже практически невозможно. И в-третьих, прежде чем приступать к серийному выпуску, все параметры промышленных образцов обкатывают с использованием математических моделей. В итоге минимизируется влияние нагрева ячеек на КПД батареи, улучшается система отвода тепла, находится оптимальное сечение соединяющих шин, исследуются пути снижения скорости деградации фотоэлементов и т. д. Решать подобные задачи, не имея оборудованной лаборатории и соответствующей квалификации, невозможно.

Низкая стоимость самодельных солнечных батарей позволяет построить установку, позволяющую полностью отказаться от услуг энергокомпаний

Тем не менее сделанные своими руками солнечные батареи показывают неплохие результаты производительности и не так уж и сильно отстают от промышленных аналогов. Что же касается цены, то здесь мы имеем выигрыш более чем в два раза, то есть при одинаковых затратах самоделки дадут в два раза больше электроэнергии.

Учитывая всё вышесказанное, вырисовывается картина того, какие фотоэлементы подходят под наши условия. Плёночные отпадают по причине отсутствия в продаже, а аморфные - из-за короткого срока службы и низкого КПД. Остаются ячейки из кристаллического кремния. Надо сказать, что в первом самодельном устройстве лучше использовать более дешёвые «поликристаллы». И только обкатав технологию и «набив руку», следует переходить на монокристаллические ячейки.

Для обкатки технологий подойдут дешёвые некондиционные фотоэлементы - как и качественные устройства, их можно купить на зарубежных торговых площадках

Что касается вопроса, где взять недорогие солнечные элементы, то их можно найти на зарубежных торговых площадках типа Taobao, Ebay, Aliexpress, Amazon и др. Там они продаются как в виде отдельных фотоэлементов различных размеров и производительности, так и готовыми наборами для сборки солнечных панелей любой мощности.

Продавцы нередко предлагают фотоэлементы так называемого класса «B», которые представляют собой повреждённые солнечные батареи моно- или поликристаллического типа. Небольшие сколы, трещины или отсутствие уголков практически не сказывается на производительности ячеек, зато позволяет приобрести их по гораздо меньшей стоимости. Именно по этой причине их выгоднее всего использовать в самодельных гелиоэнергетических устройствах.

Можно ли заменить фотоэлектрические пластины чем-то другим

Редко у какого домашнего мастера не найдётся заветной коробочки со старыми радиодеталями. А ведь диоды и транзисторы от старых приёмников и телевизоров являются всё теми же полупроводниками с p-n-переходами, которые при освещении солнечным светом вырабатывают ток. Воспользовавшись этими их свойствами и соединив несколько полупроводниковых приборов, можно сделать самую настоящую солнечную батарею.

Для изготовления маломощной солнечной батареи можно использовать старую элементную базу полупроводниковых приборов

Внимательный читатель сразу же спросит, в чём подвох. Зачем платить за фабричные моно- или поликристаллические ячейки, если можно использовать то, что лежит буквально под ногами. Как всегда, дьявол скрывается в деталях. Дело в том, что самые мощные германиевые транзисторы позволяют получить на ярком солнце напряжение не более 0.2 В при силе тока, измеряемой микроамперами. Для того чтобы достичь параметров, которые выдаёт плоский кремниевый фотоэлемент, понадобится несколько десятков, а то и сотен полупроводников. Сделанная из старых радиодеталей батарея сгодится разве что для зарядки кемпингового светодиодного фонаря или небольшого аккумулятора мобильного телефона. Для реализации более масштабных проектов, без покупных солнечных ячеек не обойтись.

На какую мощность солнечных батарей можно рассчитывать

Задумываясь о строительстве собственной солнечной электростанции, каждый мечтает о том, чтобы полностью отказаться от проводного электричества. Для того чтобы проанализировать реальность этой затеи, сделаем небольшие расчёты.

Узнать суточное потребление электроэнергии несложно. Для этого достаточно заглянуть в присланный энергосбывающей организацией счёт и разделить количество указанных там киловатт на число дней в месяце. К примеру, если вам предлагают оплатить 330 кВт×час, то это значит, что суточное потребление составляет 330/30=11 кВт×час.

График зависимости мощности солнечной батареи в зависимости от освещённости

В расчётах следует обязательно учитывать тот факт, что солнечная панель будет вырабатывать электричество только в светлое время суток, причём до 70% генерации осуществляется в период с 9 до 16 часов. Кроме того, эффективность работы устройства напрямую зависит от угла падения солнечных лучей и состояния атмосферы.

Небольшая облачность или дымка снизят эффективность токоотдачи гелиоустановки в 2–3 раза, тогда как затянутое сплошными облаками небо спровоцирует падение производительности в 15–20 раз. В идеальных условиях для генерации 11 кВт×час энергии было бы достаточно солнечной батареи мощностью 11/7 = 1.6 кВт. Учитывая влияние природных факторов, этот параметр следует увеличить примерно на 40–50%.

Кроме того, есть ещё один фактор, заставляющий увеличить площадь используемых фотоэлементов. Во-первых, не следует забывать о том, что ночью батарея работать не будет, а значит, понадобятся мощные аккумуляторы. Во-вторых, для питания бытовых приборов нужен ток напряжением 220 В, поэтому понадобится мощный преобразователь напряжения (инвертор). Специалисты утверждают, что потери на накопление и трансформацию электроэнергии забирают до 20–30% от её общего количества. Поэтому реальная мощность солнечной батареи должна быть увеличена на 60–80% от расчётной величины. Принимая значение неэффективности в 70%, получаем номинальную мощность нашей гелиопанели, равную 1.6 + (1.6×0.7) =2.7 кВт.

Использование сборок из высокотоковых литиевых аккумуляторов является одним из наиболее изящных, но отнюдь не самым дешёвым способом хранения солнечной электроэнергии

Для хранения электроэнергии понадобятся низковольтные аккумуляторы, рассчитанные на напряжение 12, 24 или 48 В. Их ёмкость должна быть рассчитана на суточное потребление энергии плюс потери на трансформацию и преобразование. В нашем случае понадобится массив батарей, рассчитанных на хранение 11 + (11×0.3) = 14.3 кВт×час энергии. Если использовать обычные 12-вольтовые автомобильные аккумуляторы, то понадобится сборка на 14300 Вт×ч / 12 В = 1200 А×ч, то есть шесть аккумуляторов, рассчитанных на 200 ампер-часов каждый.

Как видите, даже для того, чтобы обеспечить электричеством бытовые потребности средней семьи, понадобится серьёзная гелиоэлектрическая установка. Что касается использования самодельных солнечных батарей для отопления, то на данном этапе такая затея не выйдет даже на границы самоокупаемости, не говоря уж о том, чтобы можно было что-то сэкономить.

Расчёт размера батареи

Размер батареи зависит от требуемой мощности и габаритов источников тока. При выборе последних вы обязательно обратите внимание на предлагаемое разнообразие фотоэлементов. Для использования в самодельных устройствах удобнее всего выбирать солнечные ячейки среднего размера. Например, рассчитанные на выходное напряжение 0.5 В и силу тока до 3 А поликристаллические панели размером 3×6 дюймов.

При изготовлении солнечной батареи они будут последовательно соединяться в блоки по 30 шт, что позволит получить требуемое для зарядки автомобильной батареи напряжение 13–14 В (учитывая потери). Максимальная мощность одного такого блока составляет 15 В × 3 А = 45 Вт. Исходя из этого значения, будет нетрудно подсчитать, сколько элементов понадобится для постройки солнечной панели заданной мощности и определить её размеры. Например, для постройки 180-ваттного солнечного электрического коллектора понадобится 120 фотоэлементов общей площадью 2160 кв. дюймов (1.4 кв.м).

Постройка самодельной солнечной батареи

Прежде чем приступать к изготовлению солнечной панели, следует решить задачи по её размещению, рассчитать габариты и подготовить необходимые материалы и инструмент.

Правильный выбор места установки - это важно

Поскольку солнечная панель будет изготавливаться своими руками, соотношение её сторон может быть любым. Это очень удобно, поскольку самодельное устройство можно более удачно вписать в экстерьер кровли или дизайн загородного участка. По этой же причине выбирать место для монтажа батареи следует ещё до начала проектировочных мероприятий, не забывая учитывать несколько факторов:

  • открытость места для солнечных лучей в течение светового дня;
  • отсутствие затеняющих построек и высоких деревьев;
  • минимальное расстояние до помещения, в котором установлены аккумулирующие мощности и преобразователи.

Конечно, установленная на крыше батарея выглядит более органично, однако размещение устройства на земле имеет больше преимуществ. В этом случае исключается возможность повреждения кровельных материалов при установке поддерживающего каркаса, снижается трудоёмкость монтажа устройства и появляется возможность своевременного изменения «угла атаки солнечных лучей». И что самое главное - при нижнем размещении будет намного проще поддерживать чистоту поверхности солнечной панели. А это является залогом того, что установка будет работать в полную силу.

Монтаж солнечной панели на крыше вызвана скорее нехваткой места, чем необходимостью или удобством эксплуатации

Что понадобится в процессе работы

Приступая к изготовлению самодельной солнечной панели, следует запастись:

  • фотоэлементами;
  • многожильным медным проводом или специальными шинами для соединения солнечных ячеек;
  • припоем;
  • диодами Шоттки, рассчитанными на токоотдачу одного фотоэлемента;
  • качественным антибликовым стеклом или плексигласом;
  • рейками и фанерой для изготовления каркаса;
  • силиконовым герметиком;
  • метизами;
  • краской и защитным составом для обработки деревянных поверхностей.

В работе понадобится самый простой инструмент, который всегда есть под рукой у домовитого хозяина - паяльник, стеклорез, пила, отвёртка, малярная кисть и др.

Инструкция по изготовлению

Для изготовления первой солнечной батареи лучше всего использовать фотоэлементы с уже припаянными выводами - в этом случае уменьшается риск повреждения ячеек при сборке. Тем не менее, если вы имеете навыки обращения с паяльником, то сможете немного сэкономить, купив солнечные элементы с нераспаянными контактами. Для постройки панели, которую мы рассматривали в приведённых выше примерах, понадобится 120 пластин. Используя соотношение сторон примерно 1:1, потребуется укладка 15 рядов фотоэлементов по 8 штук в каждом. При этом мы сможем каждые два «столбика» соединить последовательно, а четыре таких блока подключить параллельно. Таким образом можно избежать путаницы в проводах и получить ровный, красивый монтаж.

Схема электрических соединений домашней солнечной электростанции

Корпус

Сборку солнечной панели всегда следует начинать с изготовления корпуса. Для этого нам понадобятся алюминиевые уголки или деревянные рейки высотой не более 25 мм - в этом случае они не будут бросать тень на крайние ряды фотоэлементов. Исходя из размеров наших кремниевых ячеек размером 3х6 дюймов (7.62х15.24 см), размер рамы должен составлять не менее 125х 125 см. Если вы решите использовать другое соотношение сторон (например, 1:2), то каркас можно дополнительно усилить поперечиной из рейки такого же сечения.

Обратную сторону корпуса следует зашить панелью из фанеры или OSB, а в нижнем торце рамы просверлить вентиляционные отверстия. Соединение внутренней полости панели с атмосферой понадобится для выравнивания влажности - в противном случае не избежать запотевания стёкол.

Для изготовления корпуса солнечной панели подойдут самые простые материалы - деревянные рейки и фанера

По внешнему размеру каркаса вырезают панель из плексигласа или высококачественного стекла высокой степени прозрачности. В крайнем случае можно использовать оконное стекло толщиной до 4 мм. Для его крепления подготавливают уголковые кронштейны, в которых выполняют сверления для крепления к раме. При использовании оргстекла можно проделать отверстия непосредственно в прозрачной панели - это упростит сборку.

Чтобы защитить деревянный корпус солнечной батареи от влаги и грибка, его пропитывают антибактериальным составом и окрашивают масляной краской.

Для удобства сборки электрической части, из ДВП или другого диэлектрического материала вырезают подложку по внутреннему размеру рамы. В дальнейшем на ней будет выполняться монтаж фотоэлементов.

Пайка пластин

Перед тем как начать пайку, следует «прикинуть» укладку фотоэлементов. В нашем случае понадобится 4 массива ячеек по 30 пластин в каждом, причём располагаться в корпусе они будут пятнадцатью рядами. С такой длинной цепочкой будет неудобно работать, к тому же возрастает риск повреждения хрупких стеклянных пластин. Рационально будет соединять по 5 деталей, а окончательную сборку выполнять после того, как фотоэлементы будут смонтированы на подложке.

Для удобства, фотоэлементы можно смонтировать на непроводящей подложкке из текстолита, оргстекла или ДВП

После соединения каждой цепочки, следует проверить её работоспособность. Для этого каждую сборку помещают под настольную лампу. Записывая значения силы тока и напряжения, можно не только контролировать работоспособность модулей, но и сравнивать их параметры.

Для пайки используем маломощный паяльник (максимум 40 Вт) и хороший, легкоплавкий припой. Его в небольшом количестве наносим на выводные части пластин, после чего, соблюдая полярность подключения, соединяем детали друг с другом.

При пайке фотоэлементов следует проявлять максимальную аккуратность, поскольку эти детали отличаются повышенной хрупкостью

Собрав отдельные цепочки, разворачиваем их тыльной частью к подложке и при помощи силиконового герметика приклеиваем к поверхности. Каждый 15-вольтовый блок фотоэлементов снабжаем диодом Шоттки. Этот прибор позволяет току протекать только в одном направлении, поэтому не позволит аккумуляторам разряжаться при низком напряжении солнечной панели.

Окончательное соединение отдельных цепочек фотоэлементов выполняют согласно представленной выше электрической схеме. В этих целях можно использовать специальную шину или многожильный медный провод.

Навесные элементы солнечной батареи следует закрепить термоклеем или саморезами

Сборка панели

Подложки с расположенными на них фотоэлементами укладывают в корпус и крепят саморезами. Если рама усиливалась поперечиной, то в ней выполняют несколько сверлений под монтажные провода. Кабель, который выводят наружу, надёжно фиксируют на раме и припаивают к выводам сборки. Чтобы не путаться с полярностью, лучше всего использовать двухцветные провода, подключая красный вывод к «плюсу» батареи, а синий - к её «минусу». По верхнему контуру рамы наносят сплошной слой силиконового герметика, поверх которого укладывают стекло. После окончательной фиксации сборку солнечной батареи считают законченной.

После того, как на герметик будет установлено защитное стекло, панель можно транспортировать к месту установки

Установка и подключение солнечной батареи к потребителям

В силу ряда причин самодельная солнечная панель является достаточно хрупким устройством, поэтому требует обустройства надёжного поддерживающего каркаса. Идеальным вариантом будет конструкция, которая позволит ориентировать источник бесплатной электроэнергии в обеих плоскостях, однако сложность такой системы чаще всего является весомым доводом в пользу простой наклонной системы. Она представляет собой подвижную раму, которую можно выставить под любым углом к светилу. Один из вариантов каркаса, сбитого из деревянного бруса, представлен ниже. Вы же можете использовать для его изготовления металлические уголки, трубы, шины и т. д. – всё, что есть под руками.

Чертёж каркаса солнечной батареи

Чтобы подключить солнечную батарею к аккумуляторам, понадобится контроллер заряда. Этот прибор будет следить за степенью заряда и разряда батарей, контролировать токоотдачу и выполнять переключение на сетевое питание при значительной просадке напряжения. Прибор необходимой мощности и требуемого функционала можно купить в тех же торговых точках, где продаются фотоэлементы. Что касается питания бытовых потребителей, то для этого потребуется трансформировать низковольтное напряжение в 220 В. С этим успешно справляется другое устройство - инвертор. Надо сказать, что отечественная промышленность выпускает надёжные приборы с хорошими ТТХ, поэтому преобразователь можно купить на месте - бонусом в этом случае будет «настоящая» гарантия.

Одной солнечной батареи для полноценного электроснабжения дома будет недостаточно - понадобятся еще и аккумуляторы, контроллер заряда и инвертор

В продаже можно найти инверторы одной и той же мощности, отличающиеся по цене в разы. Подобный разброс объясняется «чистотой» выходного напряжения, что является необходимым условием питания отдельных электрических устройств. Преобразователи с так называемой чистой синусоидой имеют усложнённую конструкцию, и как следствие, более высокую стоимость.

Видео: изготовление солнечной панели своими руками

Постройка домашней солнечной электростанции является нетривиальной задачей и требует как финансовых и временных затрат, так и минимальных знаний основ электротехники. Приступая к сборке солнечной панели, следует соблюдать максимальное внимание и аккуратность - только в этом случае можно рассчитывать на удачное решение вопроса. Напоследок хотелось бы напомнить о том, что загрязнение стекла является одним из факторов падения производительности. Не забывайте своевременно чистить поверхность солнечной панели, иначе она не сможет работать на полную мощность.

Продолжаем нашу тему, посвященную строительству домашней солнечной электростанции. С общей информацией о , о принципах расчета солнечных панелей, а также о для автономных систем электроснабжения вы можете ознакомиться, прочитав наши предыдущие статьи. Сегодня же мы расскажем об особенностях самостоятельного изготовления солнечных панелей, о последовательности подключения электрических преобразователей и о защитных устройствах, которые должны входить в комплект солнечной электростанции.

Изготовление фотоэлектрических модулей

Стандартный фотоэлектрический модуль (панель) состоит из трех основных элементов.

  1. Корпус панели.
  2. Рамка.
  3. Фотоэлектрические ячейки.

Самым простым по конструкции элементом солнечного модуля является его корпус. Как правило, его лицевая сторона представляет собой обыкновенный лист стекла, размеры которого соответствуют количеству солнечных ячеек.

Adoronkin Пользователь FORUMHOUSE

Стекло использовал обычное оконное – 3 мм (самое недорогое). Проводил тест: производительность модуля стекло ухудшает незначительно, так что не вижу особого смысла брать закалённое или просветлённое стекло.

Оконное стекло часто используется при изготовлении защитного корпуса для солнечных панелей. Если же вы сомневаетесь в прочности этого материала, то можно использовать стекло закаленное или обычное, но более толстое (5…6 мм). В этом случае можно не сомневаться, что фотоэлектрические элементы будут надежно защищены от проявлений разрушительной природной стихии (от града, например).

Тыльная сторона корпуса может быть изготовлена из влагостойкого материала, который будет защищать его от попадания пыли и влаги на солнечные элементы. Это может быть металлическая жесть, герметично прикрепленная к рамке с помощью заклепок и силикона или, опять же, обыкновенное стекло.

При этом наличие задней стенки на корпусе самодельной солнечной панели некоторые умельцы и вовсе не приветствуют.

Adoronkin

Тыльная сторона батареи открыта (для лучшего охлаждения), но покрыта акриловым лаком, смешанным с прозрачным герметиком.

Учитывая, что при нагреве панелей значительно падает их мощность, подобное решение выглядит оправданно. Ведь оно обеспечивает эффективное охлаждение полупроводниковых элементов и одновременно – качественную герметизацию солнечных ячеек. Все вместе гарантированно продлевает срок эксплуатации солнечных панелей.

Рамка

Рамки для самодельных солнечных панелей чаще всего изготавливают из стандартных алюминиевых уголков. Лучше использовать алюминий с покрытием – анодированный или крашенный. Если есть соблазн изготовить рамку из дерева или пластика, будьте готовы к тому, что через пару лет изделие может рассохнуться или вовсе развалиться под действием климатических факторов (исключение составляет оконный пластик).

BOB691774 Пользователь FORUMHOUSE

Покупаю там, где производят окна. Цена – 80 руб. за метр. Профиль полностью готов к работе, только запилить надо на 45° и под нагревом, углы склеить.

Рассмотрим самый простой вариант панели: панель с алюминиевой рамкой.

Детали алюминиевой рамки легко скрепляются между собой болтами или саморезами.

Впоследствии к алюминиевому уголку можно без особых усилий приклеить стеклянный корпус. Все, что для этого нужно – обычный силиконовый герметик.

Adoronkin

Я брал силиконовый герметик – универсальный. Достаточно 1-го тюбика. Герметик лучше брать прозрачный. Химическую безопасность герметика по отношению к фотоэлектрическим элементам подтвердила годовая эксплуатация батареи.

В итоге получится неглубокий ящик со стеклянным дном, к которому впоследствии будут приклеены фотоэлектрические элементы.

Определяя размер корпуса и рамки, следует учитывать необходимость в зазоре между соседними фотоэлектрическими ячейками, который равен – 2…5 мм.

Пайка солнечных элементов

Самым ответственным этапом сборки солнечных модулей является спаивание фотоэлектрических элементов. Солнечные ячейки изготовлены из очень хрупкого материала, поэтому и обращения они требуют соответствующего. Те люди, которые уже имели с ними дело, впредь при покупке солнечных элементов заказывают себе ячейки с некоторым запасом по количеству (10 – 15%). Например, для изготовления панели, рассчитанной на 36 элементов, они приобретают 39 – 42 ячейки.

Тонкие шинки для спаивания солнечных ячеек, более толстые шинки (с помощью которых соседние ряды панели объединяются между собой) и солнечные ячейки лучше приобретать у одного и того же продавца. Это экономит время на поиски подходящих элементов и дает определенные гарантии их совместимости.

Пайка элементов в случае их последовательного соединения производится по следующей схеме.

Отрицательный (лицевой) контакт солнечного элемента припаивается к положительному (тыльному) контакту следующей ячейки и т. д.

Так выглядит готовая панель.

Для работы понадобятся следующие инструменты и материалы:

  • Мощный паяльник 40-60 Вт (не менее).
  • Флюс (флюс-маркер) – обязательно должен быть нейтральным (в противном случае припаянные контакты быстро окислятся).
  • Шинки разной ширины.
  • Резиновые перчатки – чтобы не вымазывать солнечные элементы (особенно их лицевую часть).

Еще нам понадобится олово. Это на тот случай, если шинка будет плохо припаиваться к контактам. Ячейки, с которыми ведется работа, располагаются на твердой и ровной поверхности. Это может быть дощечка или стекло. Для того, чтобы ячейки не скользили по рабочей поверхности стола, их можно зафиксировать с помощью кусочков изоленты, проклеенных по периметру элемента. Клеить изоленту на саму ячейку (особенно на ее лицевую часть) не следует. Свободный конец шинки следует прикрепить к столу с помощью двухстороннего скотча.

Пайка элементов и сборка панелей производятся в следующем порядке: первым делом контактная канавка пластины по всей длине промазывается флюсом. Затем плоская шинка укладывается в канавку и припаивается к контакту пластины по всей ее ширине (на отрицательном полюсе элемента).

Или в трех точках (как правило – на положительном полюсе элемента).

Количество точек припаивания зависит от конструкции элемента.

Поочередно контакты припаиваются ко всем солнечным элементам. Дополнительный припой используется только в тех случаях, когда с первого раза шинку не удается надежно припаять к пластине.

В первую очередь контакты припаиваются к лицевой (отрицательной) стороне каждой ячейки, которая будет ложиться на стеклянный корпус панели.

Шинка необходимого размера подготавливается заранее. Ее длина должна соответствовать ширине 2-х соседних пластин.

Пластины с припаянными контактами выкладываются на стеклянный корпус панели лицевой стороной вниз. После этого их можно припаивать друг к другу согласно полярности («–» каждой ячейки припаивается к «+» соседней ячейки и так далее).

Для того чтобы элементы было удобнее располагать на стеклянном корпусе панели, его поверхность можно предварительно разметить.

Sliderrr Пользователь FORUMHOUSE

На стекле нанес черным фломастером точки расположения ячеек. Расположил ячейки и зафиксировал их головками, гайками и болтами.

Гайки, ключи и другие металлические предметы в данном случае использовались в качестве груза. Зафиксировать ячейки можно также с помощью прозрачного силикона, который наносится на стекло по углам каждого элемента.

Объединяя между собой соседние ряды фотоэлектрических элементов, следует использовать дополнительный припой. Это повысит надежность пайки в местах соединения проводников различной ширины.

Когда все ячейки спаяны между собой, а проводники выведены наружу сквозь алюминиевую рамку панели, можно приступать к заливке солнечных элементов.

Для этого швы между соседними элементами заливаются силиконовым герметиком.

Sliderrr

Залил силиконом зазоры между панелями (немного приплюснул и срезал сопло шприца, чтобы обеспечить эстетичность шва и хороший контакт силикона со стеклом). Когда подсохло, промазал по периметру каждую панельку ещё раз. После того, как высох герметик, два раза покрыл ячейки яхтовым лаком. В дальнейшем попробую лак изоляционный.

Пользователь Mirosh вместо лака использует для заливки ячеек белый силикон, который наносит на поверхность тонким слоем при помощи шпателя. Результат – вполне удовлетворителен.

Перед окончательной сборкой каждый элемент желательно протестировать на предмет генерируемой им мощности. Сделать это можно с помощью мультиметра. Если существенных различий между силой тока и напряжением, которые генерирует каждая отдельная ячейка, нет, то можно смело включать их в состав фотоэлектрического модуля.

Установка диодов Шоттки

В конструкции солнечных панелей зачастую используются элементы, о которых мы ранее не упоминали. Это шунтирующие диоды Шоттки.

К их установке прибегают по двум причинам.

Во-первых, шунтирующие диоды ставят для того, чтобы в темное время суток или в пасмурную погоду солнечные панели не разряжали аккумулятор, входящий в комплект солнечной электростанции.

Alex МАП Пользователь FORUMHOUSE

В случае прямого подключения солнечных батарей к аккумулятору ночью на панелях высаживается напряжение, и они греются. Поэтому в схему примитивного солнечного контроллера, разработанного ещё лет 10 назад, был введён диод Шоттки (защита от ночного разряда АКБ).

Если к солнечным панелям подключен современный контроллер, то особой необходимости в защите от ночного разряда нет. Исправный контроллер, без помощи дополнительных устройств, вовремя отключит СБ от аккумулятора.

Во-вторых, если солнечный модуль закрывается тенью от стоящего рядом здания (или другого массивного предмета), то мощность этого элемента снижается. Последствия снижения мощности таковы: по отношению к остальным панелям, подключенным к затененному элементу последовательно, затененный элемент из источника тока превращается в резистивную нагрузку. Сопротивление затененного модуля сильно возрастает, а его температура значительно увеличивается.

Значительное снижение мощности – это самое безобидное из того, к чему может привести частичное затенение последовательно соединенной солнечной батареи. Ведь в конечном итоге затененный модуль перегреется и выйдет из строя. Это явление получило название «эффект горячего пятна».

Для того чтобы избежать этого эффекта, параллельно каждому последовательно подключенному модулю (или последовательному ряду солнечных ячеек) устанавливается диод Шоттки. Диод позволяет пустить электричество в обход затененной панели. В этом случае генерируемое напряжение снизится, но большой просадки тока удастся избежать.

Alex МАП

Большой ток от остальных панелей цепи, которые освещены, не прервётся, а пойдёт в обход затенённых частей панелей через диоды. Итоговое напряжение станет чуть меньше, но контроллеру это не важно. Если бы в панелях не были встроены диоды, тогда при малейшем затенении хотя бы кусочка 1 панели вся цепочка полностью бы переставала давать ток.

Иными словами, потери мощности будут соизмеримы с площадью затенения.

Диоды можно устанавливать параллельно всему модулю, а можно параллельно его отдельным рядам.

Здесь изображена схема, при которой каждый ряд ячеек, установленных в одном модуле, имеет свой диод. На практике же модуль чаще всего разделяется на 2 равные части.

HouzeR Пользователь FORUMHOUSE

Обычно для четырехрядной панели выводится средняя точка, то есть ячейки шунтируются пополам. Диоды ставят в клеммной коробке.

В любом случае, все модули солнечной панели следует располагать так, чтобы свет попадал на них равномерно. Тогда не придется решать проблему шунтирования отдельных модулей или даже ячеек.

Клеммные коробки для удобства располагают на тыльной стороне солнечных панелей.

Если несколько последовательно соединенных групп панелей подключается к контроллеру параллельно, то в этом случае каждая последовательная цепочка включается в общую цепь через развязывающий диод. Это позволяет избежать потерь при рассогласовании отдельных последовательных цепочек и дополнительно защитить аккумулятор от разряда в ночное время (если, вдруг, контроллер выйдет из строя).

Диоды подбираются по двум основным параметрам: по максимальной силе тока, которая будет проходить в прямом направлении (прямой ток), и по обратному напряжению. Максимальное напряжение обратного тока (Uобр.макс.) не должно привести к пробою диода. При этом рабочие характеристики диода должны немного превышать номинал панели (примерно в 1,3 – 1,5 раза).

Но здесь есть одна хитрость.

Мax94 Пользователь FORUMHOUSE

Нормальных Шоттки на большие напряжения не бывает. Это просто столбы с падением по прямому току. Так что лучше брать обычные с Urev. Max ≈ 30...100В.

Установка панелей

Как правильно крепить панели и где их устанавливать? Ответы на эти вопросы зависят от конструкции СБ и от возможностей их владельца. Единственное, о чем должны позаботиться все без исключения – это о соблюдении угла наклона. Для каждого региона этот угол будет свой, а зависит он напрямую от широты местности.

В среднем зимой угол наклона должен быть на 10°…15° выше оптимального значения, летом – на такую же величину – ниже. можно посмотреть в разделе FORUMHOUSE.

Сечение проводников

В соответствии с постулатами электротехники слишком малое сечение проводника может привести к его перегреву и даже к возгоранию. Слишком большое – это неплохо, но приведет к необоснованно завышенному удорожанию автономной системы. Поэтому задача ее создателя – найти «золотую середину».

Начнем с того, что самые толстые проводники следует устанавливать в цепи, соединяющий аккумулятор с инвертором (кстати, чем короче будет этот участок, тем лучше). Именно здесь протекают токи большой силы.

Проводники, соединяющие панели с инвертором, а также соединяющие панели между собой, можно выбирать с малым сечением. На этих участках цепи может присутствовать сравнительно высокое напряжение, но всегда будет малая сила тока.

HeliosHouse Пользователь FORUMHOUSE

16 мм² не нужно и 10 мм² не нужно. 4 – более чем достаточно. "Толстый" провод понадобится только в контуре инвертора, сечение нужно подбирать в соответствии с мощностью тока.

«Толстый» и «тонкий» – понятия растяжимые, поэтому не будем уходить от стандартов.

Учитывая, что алюминиевые проводники в домашних системах электроснабжения на сегодняшний день использовать запрещено, табличные данные распространяются на медные токопроводящие жилы с поливинилхлоридной или резиновой изоляцией.

Также, выбирая проводники, следует обращать внимание на рекомендации производителей инверторов, контроллеров и других устройств, задействованных в системе.

Защитные автоматы

В цепи солнечной электростанции, как и в цепи любого другого мощного источника электроэнергии, необходимо ставить защиту от коротких замыканий. В первую очередь автоматы или плавкие вставки должны защищать силовые кабели, идущие от аккумуляторных батарей к инвертору.

Leo2 Пользователь FORUMHOUSE

Если замкнет что в инверторе, то так и до пожара недалеко. Одно из требований к аккумуляторным системам – наличие автомата DC или плавкой вставки как минимум на одном из проводов и как можно ближе к клеммам аккумулятора.

Помимо этого, защита ставится в цепь аккумулятора и контроллера. Не стоит также пренебрегать защитой отдельных групп потребителей (потребителей постоянного тока, бытовых приборов и т. д.). Но это уже правило построения любой системы электроснабжения.

Автомат, устанавливаемый между аккумулятором и контроллером, должен иметь большой запас по току осечки. Иными словами, защита не должна сработать случайно (при увеличении нагрузки). Причина: если на ввод контроллера подается напряжение (от СБ), то в этот момент от него нельзя отключать аккумулятор. Это может привести к выходу устройства из строя.

Порядок подключения

Сборка электрической цепи происходит в следующем порядке:

  1. Подключение контроллера к аккумулятору.
  2. Подключение к контроллеру солнечных панелей.
  3. Подключение к контроллеру группы потребителей постоянного тока.
  4. Подключение инвертора к аккумуляторным батареям.
  5. Подключение нагрузки к выходу инвертора.

Подобная последовательность подключения поможет уберечь контроллер и инвертор от повреждений.

Вы можете узнать от участников нашего портала, посетив соответствующую тему. Тем, кого всерьез заинтересовала , мы рекомендуем посетить еще один полезный раздел, посвященный обмену опытом в этой области. В заключение предлагаем вашему вниманию видеосюжет, который расскажет о том, как правильно монтируются и подключаются солнечные батареи.

Жизнь в стиле «Органик», столь популярная идея в последние годы, предполагает гармоничные «отношения» человека с окружающей средой. Камнем преткновения любого экологического подхода является использование полезных ископаемых для получения энергии.

Выбросы токсичных веществ и углекислоты в атмосферу, выделяющихся при сгорании ископаемого топлива, постепенно убивают планету. Поэтому концепция «зеленой энергии», которая не вредит окружающей среде, является базовой основой многих новых энерготехнологий. Одним из таких направлений получения экологически чистой энергии является технология преобразования солнечного света в электрический ток. Да, именно так, речь пойдет о солнечных батареях и возможности установки систем автономного энергообеспечения в загородном доме.

В настоящий момент энергоустановки промышленного изготовления на базе солнечных батарей, применяемые для полного энерго- и теплообеспечения коттеджа, стоят не менее 15-20 тыс. долларов при гарантированном сроке эксплуатации около 25 лет. Стоимость любой гелиевой системы в перерасчете соотношения гарантированного срока эксплуатации к средним годичным затратам на коммунальное содержание загородного дома достаточно высокая: во-первых, сегодня средняя стоимость солнечной энергии соизмерима с покупкой энергоресурсов из центральных энергосетей, во-вторых, требуются одномоментные капитальные вложения для установки системы.

Обычно принято разделять гелиосистемы, предназначенные для тепло- и энергообеспечения. В первом случае используется технология солнечного коллектора, во втором — фотоэлектрический эффект для генерации электрического тока в солнечных батареях. Мы хотим рассказать о возможности самостоятельного изготовления солнечных батарей.

Технология ручной сборки солнечной энергетической системы достаточно проста и доступна. Практически каждый россиянин может собрать индивидуальные энергосистемы с высоким КПД при сравнительно низких затратах. Это выгодно, доступно и даже модно.

Выбор солнечных элементов для солнечной панели

Приступая к изготовлению солнечной системы, нужно обратить внимание, что при индивидуальной сборке нет необходимости в одномоментной установке полнофункциональной системы, её вполне можно наращивать постепенно. Если первый опыт оказался удачным, то имеет смысл расширять функциональность гелиосистемы.

По своей сути, солнечная батарея — это генератор, работающий на основе фотоэлектрического эффекта и преобразовывающий солнечную энергию в электрическую. Кванты света, попадающие на кремниевую пластину, выбивают электрон с последней атомной орбиты кремния. Этот эффект создает достаточное количество свободных электронов, образующих поток электрического тока.

Перед сборкой батареи нужно определиться в типе фотоэлектрического преобразователя, а именно: монокристаллическом, поликристаллическом и аморфном. Для самостоятельной сборки солнечной батареи выбирают доступные в продаже монокристаллические и поликристаллические солнечные модули.


Вверху: Монокристаллические модули без припаянных контактов. Внизу: Поликристаллические модули с припаянными контактами

Панели на основе поликристаллического кремния имеют достаточно низкий КПД (7-9%), но этот недостаток нивелируется тем, что поликристаллы практически не понижают мощность при облачности и пасмурной погоде, гарантийная долговечность таких элементов составляет около 10 лет. Панели на основе монокристаллического кремния имеют КПД около 13% при сроке эксплуатации около 25 лет, но эти элементы сильно снижают мощность при отсутствии прямого солнечного света. Показатели КПД кристаллов кремния от разных производителей могут существенно варьироваться. По практике работы солнечных электростанций в полевых условиях можно говорить о сроке службы монокристаллических модулей более 30 лет, а для поликристаллических — более 20 лет. Причем за весь период эксплуатации потеря мощности у кремниевых моно- и поликристаллических элементов составляет не более 10%, когда у тонкопленочных аморфных батарей за первые два года мощность снижается на 10-40%.



Солнечные элементы Evergreen Solar Cells с контактами в наборе 300 шт.

На аукционе Еbay можно приобрести набор Solar Cells для сборки солнечной батареи из 36 и 72 солнечных элементов. Такие наборы доступны в продаже и в России. Как правило, для самостоятельной сборки солнечных батарей используются солнечные модули В-типа, то есть модули, отбракованные на промышленном производстве. Эти модули не теряют своих эксплуатационных показателей и значительно дешевле. Некоторые поставщики предлагают солнечные модули на стеклотекстолитовой плате, что предполагает высокий уровень герметичности элементов, а, соответственно, надежности.

Название Характеристики Стоимость, $
Everbright Solar Cells (Еbay) без контактов поликристаллические, набор - 36 шт., 81х150 мм, 1,75 W (0,5 В), 3А, эффективность (%) - 13
в наборе с диодами и кислотой для паяния в карандаше
$46.00
$8.95доставка
Solar Cells (США новые) монокристаллические, 156х156 мм, 81х150 мм, 4W (0,5 В), 8А, эффективность (%) - 16.7-17.9 $7.50
монокристаллические, 153х138 мм, U хол. хода - 21,6V, I корот. зам. - 94 mA, Р - 1,53W, эффективность (%) - 13 $15.50
Solar Cells на стеклотекстолитовой плате поликристаллические, 116х116 мм, U хол. хода - 7,2V, I корот. зам. - 275 mA., Р - 1,5W, эффективность (%) - 10 $14.50
$87.12
$9.25 доставка
Solar Cells (Еbay) без контактов поликристаллические, набор - 72 шт., 81х150 мм 1.8W $56.11
$9.25 доставка
Solar Cells (Еbay) с контактами монокристаллические, набор - 40 шт., 152х152 мм $87.25
$14.99 доставка

Разработка проекта гелиевой энергосистемы

Проектирование будущей гелиосистемы во многом зависит от способа её установки и монтажа. Солнечные батареи должны быть установлены под наклоном, чтобы обеспечить попадание прямых солнечных лучей под прямым углом. Производительность солнечной панели во многом зависит от интенсивности световой энергии, а также от угла падения солнечных лучей. Размещение солнечной батареи относительно солнца и угол наклона зависит от географического расположения гелиевой системы и времени года.


Сверху вниз: Монокристаллические солнечные панели (по 80 ватт) на даче установлены практически вертикально (зима). Монокристаллические солнечные панели на даче имеют меньший угол (весна)ю Механическая система управления углом наклона солнечной батареи.

Промышленные гелиосистемы часто снабжены датчиками, которые обеспечивают ротационное движение солнечной панели по направлению движения солнечных лучей, а также зеркалами-концентраторами солнечного света. В индивидуальных системах такие элементы значительно усложняют и удорожают систему, поэтому не применяются. Может быть применена простейшая механическая система управлением углом наклона. В зимнее время солнечные панели должны быть установлены практически вертикально, это также защищает панель от налегания снега и обледенения конструкции.



Схема расчета угла наклона солнечной панели в зависимости от времени года

Солнечные батареи устанавливаются с солнечной стороны здания, чтобы обеспечить максимально доступный объем солнечной энергии в светлое время суток. В зависимости от географического расположения и уровня солнцестояния вычисляется угол наклона батареи, который наиболее подходит для вашего местоположения.

При усложнении конструкции можно создать систему управления углом наклона солнечной батареи в зависимости от времени года и углом поворота панели в зависимости от времени суток. Энергоэффективность такой системы будет выше.

При проектировании солнечной системы, которая будет устанавливаться на крышу дома, нужно обязательно выяснить, сможет ли кровельная конструкция выдержать требуемую массу. Самостоятельная разработка проекта предполагает расчет кровельной нагрузки с учетом веса снежного покрова в зимнее время.



Выбор оптимального статического угла наклона для кровельной солнечной системы монокристаллического типа

Для изготовления солнечных панелей можно выбирать различные материалы по удельному весу и другим характеристикам. При выборе материалов конструкции необходимо учитывать максимально допустимую температуру нагрева солнечного элемента, так как температура солнечного модуля, работающего на полную мощность, не должна превышать 250С. При превышении пиковой температуры солнечный модуль резко теряет свою способность преобразовывать солнечный свет в электрический ток. Готовые гелиосистемы для индивидуального использования, как правило, не предполагают охлаждение солнечных элементов. Самостоятельное изготовление может подразумевать охлаждение гелиосистемы или управление углом наклона солнечной панели для обеспечения функциональной температуры модуля, а также выбор соответствующего прозрачного материала, поглощающего ИК-излучение.

Грамотная конструкция солнечной системы позволяет обеспечить требуемую мощность солнечной батареи, которая будет приближаться к номинальной. При расчете конструкции нужно учитывать, что элементы одного типа дают одинаковое напряжение, не зависящее от размера элементов. Причем сила тока у крупноразмерных элементов будет больше, но и батарея будет значительно тяжелее. Для изготовления солнечной системы всегда берутся солнечные модули одного размера, так как максимальный ток будет ограничен максимальным током малого элемента.

Расчеты показывают, что в среднем в ясный солнечный день можно получить с 1 м солнечной панели не более 120 Вт мощности. Такая мощность не обеспечит работу даже компьютера. Система в 10 м дает более 1 кВт энергии и может обеспечивать электроэнергией работу основных бытовых приборов: светильников, телевизора, компьютера. Для семьи из 3-4 человек необходимо около 200-300 кВт в месяц, поэтому солнечная система, установленная с южной стороны, размером 20 м может вполне обеспечить семейные энергопотребности.

Если рассматривать среднестатистические данные по электроснабжению индивидуального жилого дома, то: ежедневное энергопотребление составляет 3 кВт ч, солнечная радиация с весны по осень — 4 кВт ч/м в день, пиковая мощность потребления — 3кВт (при включении стиральной машины, холодильника, утюга и электрочайника). С целью оптимизации энергопотребления для освещения внутри дома важно использовать лампы переменного тока с низким энергопотреблением — светодиодные и люминесцентные.

Изготовление каркаса солнечной батареи

В качестве каркаса солнечной батареи используется алюминиевый уголок. На аукционе Еbay можно приобрести готовые рамы для солнечных батарей. Прозрачное покрытие выбирается по желанию, исходя из характеристик, которые необходимы для данной конструкции.



Комплект рамы со стеклом для солнечной батареи, стоимость от 33 долларов

При выборе прозрачного защитного материала можно также ориентироваться на следующие характеристики материала:

Материал Показатель преломления Свето-пропуска-ние, % Удельный вес г/см 3 Размер листа, мм Толщина, мм Стоимость, руб./м 2
Воздух 1,0002926
Стекло 1,43-2,17 92-99 3,168
Оргстекло 1,51 92-93 1,19 3040х2040 3 960.00
Поликарбонат 1,59 до 92 0,198 3050 х2050 2 600.00
Плексиглас 1,491 92 1,19 2050х1500 11 640.00
Минеральное стекло 1,52-1,9 98 1,40

Если рассматривать показатель преломления света в качестве критерия выбора материала. Самый минимальный коэффициент преломления имеет плексиглас, более дешевым вариантом прозрачного материала является отечественное оргстекло, менее подходящим — поликарбонат. В продаже имеется поликарбонат с антиконденсатным покрытием, также этот материал обеспечивает высокий уровень термозащиты. При выборе прозрачных материалов по удельному весу и способности поглощать ИК-спектр лучшим будет поликарбонат. К лучшим прозрачным материалам для солнечных батарей относятся материалы с высоким светопропусканием.

При изготовлении солнечной батареи важно выбирать прозрачные материалы, которые не пропускают ИК-спектр и, таким образом, снижают нагревание кремниевых элементов, теряющих свою мощность при температуре свыше 250С. В промышленности используются специальные стекла, имеющие оксидно-металлическое покрытие. Идеальным стеклом для солнечных панелей считается тот материал, которые пропускает весь спектр кроме ИК-диапазона.



Схема поглощения УФ и ИК излучения различными стеклами.
а) обычное стекло, б) стекло с ИК-поглощением, в) дуплекс с термопоглощающим и обычным стеклом.

Максимальное поглощение ИК-спектра обеспечит защитное силикатное стекло с оксидом железа (Fe 2 O 3), но оно имеет зеленоватый оттенок. ИК-спектр хорошо поглощает любое минеральное стекло за исключением кварцевого, оргстекло и плексиглас относятся к классу органических стекол. Минеральное стекло более устойчиво к повреждениям поверхности, но является очень дорогим и недоступным. Для солнечных батарей также применяется специальное антибликовое сверхпрозрачное стекло, пропускающее до 98% спектра. Также это стекло предполагает поглощение большей части ИК-спектра.

Оптимальный выбор оптических и спектральных характеристик стекла значительно повышает эффективность фотопреобразования солнечной панели.



Солнечная панель в корпусе из оргстекла

Во многих мастер-классах по изготовлению солнечных батарей рекомендуется использовать оргстекло для передней и задней панели. Это позволяет проводить инспекцию контактов. Однако конструкцию из оргстекла сложно назвать полностью герметичной, способной обеспечить бесперебойную эксплуатацию панели в течение 20 лет работы.

Монтаж корпуса солнечной батареи

В мастер-классе показывается изготовление солнечной панели из 36 поликристаллических солнечных элементов размером 81x150 мм. Исходя из этих размеров, можно вычислить размеры будущей солнечной батареи. При расчете размеров важно между элементами делать небольшое расстояние, которое будет учитывать изменение размеров основы под атмосферным воздействием, то есть между элементами должно быть 3-5 мм. Результирующий размер заготовки должен быть 835х690 мм при ширине уголка 35 мм.

Самодельная солнечная батарея, сделанная с использованием алюминиевого профиля, наиболее похожа на солнечную панель фабричного изготовления. При этом обеспечивается высокая степень герметичности и прочности конструкции.
Для изготовления берется алюминиевый уголок, и выполняются заготовки рамки 835х690 мм. Чтобы можно было провести крепление метизов, в раме следует сделать отверстия.
На внутреннюю часть уголка дважды наносится силиконовый герметик.
Обязательно проследите, чтобы не было незаполненных мест. От качества нанесения герметика зависит герметичность и долговечность батареи.
Далее в раму кладется прозрачный лист из выбранного материала: поликарбоната, оргстекла, плексигласа, антибликового стекла. Важно силикону дать высохнуть на открытом воздухе, иначе испарения создадут пленку на элементах.
Стекло нужно тщательно прижать и зафиксировать.
Для надежного крепления защитного стекла понадобятся метизы. Нужно закрепить 4 угла рамки и по периметру разместить два метиза с длинной стороны рамки и по одному метизу с короткой стороны.
Метизы фиксируются при помощи шурупов.
Шурупы плотно затягиваются при помощи шуруповерта.
Каркас солнечной батареи готов. Перед креплением солнечных элементов, необходимо очистить стекло от пыли.

Подбор и пайка солнечных элементов

В настоящий момент на аукционе Еbay представлен огромный ассортимент изделий для самостоятельного изготовления солнечных батарей.



Набор Solar Cells включает комплект из 36 поликристаллических кремниевых элементов, проводники для элементов и шины, диоды Шотке и карандаш с кислотой для паяния

Так как солнечная батарея, сделанная своими руками, практически в 4 раза дешевле готовой, самостоятельное изготовление — это значительная экономия средств. На Еbay можно приобрести солнечные элементы с дефектами, но они не теряют своей функциональности, таким образом, стоимость солнечной батареи может существенно сократиться, если вы можете дополнительно пожертвовать внешним видом батареи.



Поврежденные фотоэлементы не теряют своей функциональности

При первом опыте лучше приобретать наборы для изготовления солнечных панелей, в продаже имеются солнечные элементы с припаянными проводниками. Пайка контактов — это достаточно сложный процесс, сложность усугубляется хрупкостью солнечных элементов.

Если вы приобрели кремниевые элементы без проводников, то сначала необходимо провести пайку контактов.

Так выглядит поликристаллический кремниевый элемент без проводников.
Проводники нарезаются с помощью картонной заготовки.
Необходимо аккуратно положить проводник на фотоэлемент.
На место припаивания нанести кислоту для паяния и припой. Проводник для удобства фиксируется с одной стороны тяжелым предметом.
В таком положении необходимо аккуратно припаять проводник к фотоэлементу. Во время пайки нельзя нажимать на кристалл, потому что он очень хрупкий.

Пайка элементов — это достаточно кропотливая работа. Если не удастся получить нормального соединения, то необходимо повторить работу. По нормативам серебряное напыление на проводнике должно выдерживать 3 цикла пайки при допустимых тепловых режимах, на практике сталкиваешься с тем, что напыление разрушается. Разрушение серебряного напыления происходит из-за использования паяльников с нерегулируемой мощностью (65Вт), этого можно избежать, если понизить мощность следующим образом — нужно последовательно с паяльником включить патрон с лампочкой в 100 Вт. Номинальная мощность нерегулируемого паяльника слишком высока для пайки кремниевых контактов.

Даже если продавцы проводников уверяют, что припой на соединителе имеется, его лучше нанести дополнительно. Во время пайки старайтесь аккуратно обращаться с элементами, при минимальном усилии они лопаются; не стоит складывать элементы пачкой, от веса нижние элементы могут треснуть.

Сборка и пайка солнечной батареи

При первой самостоятельной сборке солнечной батареи лучше воспользоваться разметочной подложкой, которая поможет расположить элементы ровно на некотором расстоянии друг от друга (5 мм).



Разметочная подложка для элементов солнечной батареи

Основа выполняется из листа фанеры с маркированием уголков. После пайки на каждый элемент с обратной стороны крепится кусок монтажной ленты, достаточно прижать заднюю панель к скотчу, и все элементы переносятся.



Монтажная лента, использованная для крепления, с обратной стороны солнечного элемента

При таком типе крепления сами элементы дополнительно не герметизируются, они могут свободно расширяться под действием температуры, это не приведет к повреждению солнечной батареи и разрыву контактов и элементов. Герметизации поддаются только соединительные части конструкции. Такой вид крепления больше подходит для опытных образцов, но вряд ли может гарантировать долгосрочную эксплуатацию в полевых условиях.

Последовательный план сборки батареи выглядит так:

Выкладываем элементы на стеклянную поверхность. Между элементами должно быть расстояние, что предполагает свободное изменение размеров без ущерба конструкции. Элементы нужно прижать грузами.
Пайку производим по приведенной ниже электросхеме. «Плюсовые» токоведущие дорожки размещены на лицевой стороне элементов, «минусовые» — на обратной стороне.
Перед пайкой нужно нанести флюс и припой, после аккуратно припаять серебряные контакты.
По такому принципу соединяются все солнечные элементы.
Контакты крайних элементов выводятся на шину, соответственно, на «плюс» и «минус». Для шины используется более широкий серебряный проводник, который имеется в наборе Solar Cells.
Рекомендуем также вывести «среднюю» точку, с ее помощью ставятся два дополнительных шунтирующих диода.
Клемма устанавливается также с внешней стороны рамы.
Так выглядит схема подключения элементов без выведенной средней точки.
Так выглядит клеммная планка с выведенной «средней» точкой. «Средняя» точка позволяет на каждую половину батареи поставить шунтирующий диод, который не даст батарее разряжаться при снижении освещения или затемнении одной половины.
На фото показан шунтирующий диод на «плюсовом» выходе, он противостоит разрядке аккумуляторов через батарею в ночное время и разрядке других батарей во время частичного затемнения.
Чаще в качестве шунтирующих диодов используют диоды Шотке. Они дают меньшую потерю на общей мощности электрической цепи.
В качестве токовыводящих проводов может быть использован акустический кабель в силиконовой изоляции. Для изоляции можно применить трубки из-под капельницы.
Все провода должны быть прочно зафиксированы силиконом.
Элементы могут быть соединены последовательно (см. фото), а не посредством общей шины, тогда 2-й и 4-й ряд необходимо повернуть на 1800 относительно 1-го ряда.

Основные проблемы сборки солнечной панели связаны с качеством пайки контактов, поэтому специалисты предлагают перед герметизацией панели ее протестировать.



Тестирование панели перед герметизацией, напряжение сети 14 вольт, пиковая мощность 65 Вт

Тестирование можно делать после пайки каждой группы элементов. Если вы обратите внимание на фотографии в мастер-классе, то часть стола под солнечными элементами вырезана. Это сделано намеренно, чтобы определить работоспособность электрической сети после пайки контактов.

Герметизация солнечной панели

Герметизация солнечных панелей при самостоятельном изготовлении — это самый спорный вопрос среди специалистов. С одной стороны, герметизация панелей необходима для повышения долговечности, она всегда применяется при промышленном изготовлении. Для герметизации зарубежные специалисты рекомендуют использовать эпоксидный компаунд «Sylgard 184», который дает прозрачную полимеризованную высокоэластичную поверхность. Стоимость «Sylgard 184» на Еbay составляет около 40 долларов.



Герметик с высокой степенью эластичности «Sylgard 184»

С другой стороны, если вы не хотите нести дополнительные затраты, вполне можно использовать силиконовый герметик. Однако в этом случае не стоит полностью заливать элементы, чтобы избежать их возможного повреждения в процессе эксплуатации. В таком случае элементы к задней панели можно прикрепить при помощи силикона и герметизировать только края конструкции. Насколько эффективна такая герметизация, сказать сложно, но использовать не- рекомендованные гидроизоляционные мастики не советуем, очень высока вероятность разрыва контактов и элементов.

Перед началом герметизации необходимо подготовить смесь «Sylgard 184».
Сначала заливаются места стыков элементов. Смесь должна схватиться, чтобы закрепить элементы на стекле.
После фиксации элементов делается сплошной полимеризирующий слой эластичного герметика, распределить его можно с помощью кисточки.
Так выглядит поверхность после нанесения герметика. Герметизирующий слой должен просохнуть. После полного высыхания можно закрыть солнечную батарею задней панелью.
Так выглядит лицевая сторона самодельной солнечной панели после герметизации.

Схема электроснабжения дома

Системы электроснабжения домов с использованием солнечных батарей принято называть фотоэлектрическими системами, то есть системами, обеспечивающими генерацию энергии с использованием фотоэлектрического эффекта. Для индивидуальных жилых домов рассматриваются три фотоэлектрические системы: автономная система энергообеспечения, гибридная батарейно-сетевая фотоэлектрическая система, безаккумуляторная фотоэлектрическая система, подключенная к центральной системе энергоснабжения.

Каждая из систем имеет свое предназначение и преимущества, но наиболее часто в жилых домах применяют фотоэлектрические системы с резервными аккумуляторными батареями и подключением к централизованной энергосети. Питание электросети осуществляется при помощи солнечных батарей, в темное время суток от аккумуляторов, а при их разрядке — от центральной энергосети. В труднодоступных районах, где нет центральной сети, в качестве резервного источника энергоснабжения используются генераторы на жидком топливе.

Более экономной альтернативой гибридной батарейно-сетевой системе электроснабжения будет безаккумуляторная солнечная система, подсоединенная к центральной сети энергоснабжения. Электроснабжение осуществляется от солнечных батарей, а в темное время суток сеть питается от центральной сети. Такая сеть более применима для учреждений, потому что в жилых домах большая часть энергии потребляется в вечернее время.



Схемы трех типов фотоэлектрических систем

Рассмотрим типичную установку батарейно-сетевой фотоэлектрической системы. В качестве генератора электроэнергии выступают солнечные панели, которые подсоединены через соединительную коробку. Далее в сети устанавливается контроллер солнечного заряда, чтобы избежать короткого замыкания при пиковой нагрузке. Электроэнергия накапливается в резервных батареях-аккумуляторах, а также подается через инвертор на потребители: освещение, бытовую технику, электроплиту и, возможно, используется для нагревания воды. Для установки системы отопления эффективнее применять гелиоколлекторы, которые относятся к альтернативной гелиотехнологии.



Гибридная батарейно-сетевая фотоэлектрическая система с переменным током

Существует два типа электросетей, которые используются в фотоэлектрических системах: на базе постоянного и переменного тока. Использование сети переменного тока позволяет размещать электропотребители на расстоянии, превышающем 10-15 м, а также обеспечивать условно-неограниченную нагрузку сети.

Для частного жилого дома обычно используют следующие комплектующие фотоэлектрической системы:

  • суммарная мощность солнечных панелей должна составлять 1000 Вт, они обеспечат выработку около 5 кВт ч;
  • аккумуляторы с общей емкостью в 800 А/ч при напряжении 12 В;
  • инвертор должен иметь номинальную мощность 3кВт с пиковой нагрузкой до 6 кВт, входное напряжение 24-48 В;
  • контроллер солнечного разряда 40-50 А при напряжении в 24 В;
  • источник бесперебойного питания для обеспечения кратковременного заряда с током до 150 А.

Таким образом, для фотоэлектрической системы электроснабжения понадобится 15 панелей на 36 элементов, пример сборки которых приведен в мастер-классе. Каждая панель дает суммарную мощность в 65 Вт. Более мощными будут солнечные батареи на монокристаллах. Например, солнечная панель из 40 монокристаллов имеет пиковую мощность 160 Вт, однако такие панели чувствительны к пасмурной погоде и облачности. В этом случае солнечные панели на базе поликристаллических модулей оптимальны для использования в северной части России.

В настоящее время очень модными и популярными являются альтернативные источники энергии, особенно у владельцев загородных коттеджей или частных домов. Но часто такое устройство стоит немалых денег и не каждый может себе позволить приобрести для дома солнечные батареи. Поэтому очень актуальным стало изготовление солнечных панелей своими руками. Так как же самому сделать солнечные батареи?

Характеристика солнечной панели

Солнечная батарея представляет собой полупроводниковую конструкцию, которая способна преобразовывать солнечное излучение в электроэнергию. Это позволяет обеспечить дом экономичным, надежным и, самое главное, бесперебойным электроснабжением. Особенно это актуально для труднодоступных районов проживания , а также там, где часто возникают перебои с электроэнергией от основного источника.

Такой альтернативный источник энергии довольно практичный, потому что в отличие от традиционного источника энергоснабжения стоит он гораздо меньше. Изготовление солнечных панелей своими руками позволяет не только оптимизировать энергопотребление, но также экономит финансы.

Преимущества

Солнечные батареи обладают следующими достоинствами:

  • простая установка за счет того, что нет необходимости прокладывать к опорам кабель;
  • выработка электроэнергии абсолютно не вредит окружающей среде;
  • отсутствуют подвижные части;
  • электричество поставляется независимо от распределительной сети;
  • минимальные затраты по времени на обслуживание системы;
  • небольшой вес батарей;
  • бесшумная работа;
  • продолжительный срок службы при минимальных расходах.

Недостатки

Несмотря на довольно весомые достоинства, есть у солнечных батарей и свои минусы, такие как:

  • трудоемкость процесса изготовления;
  • чувствительность к загрязнениям;
  • на эффективную работу солнечных панелей оказывают влияние погодные условия (солнечные или пасмурные дни);
  • для такой конструкция необходимо много места;
  • по ночам батареи не работают.

Требования, предъявляемые к солнечной батарее

Установить солнечные панели в частном доме под силу каждому. Но для того чтобы такая конструкция, созданная своими руками, приносила пользу по максимуму, следует учитывать ее особенности. К солнечной батарее предъявляются следующие требования:

Материалы, необходимые для изготовления солнечной батареи своими руками

Если нет возможности приобрести солнечные батареи, можно изготовить их своими руками. Вначале необходимо определиться с материалом , из которого они будут сделаны.

Чтобы создать панели, необходимы будут качественные фотоэлементы. Производители на сегодняшний день предлагают следующие виды устройств:

  • элементы из монокристаллического кремния имеют КПД до 13%, но в пасмурную погоду недостаточно эффективны;
  • фотоэлементы из поликристаллического кремния имеют КПД до 9%, работать могут как в солнечные, так и пасмурные дни.

Для энергоснабжения дома лучше всего использовать поликристаллы, которые доступны в наборах.

Важно знать, что все необходимые для сборки ячейки лучше всего приобретать у одного производителя , так как продукция разных марок имеет значительные различия в эффективности изделий. Это может создать дополнительные сложности при сборке, повлечь затраты в результате эксплуатации, при этом солнечная батарея будет иметь невысокую мощность.

Чтобы сделать солнечную панель из подручных средств, необходимы будут специальные проводники, предназначенные для соединения фотоэлементов.

Корпус будущей конструкции лучше всего изготавливать из алюминиевых уголков, обладающих небольшим весом. Можно также использовать такой материал, как дерево. Но из-за того, что конструкция будет все время подвержена атмосферному влиянию, срок ее эксплуатации будет снижаться.

Размеры корпуса панели зависят от количества фотоячеек.

Внешнее покрытие фотоэлементов может быть выполнено из оргстекла или прозрачного поликарбоната. Также применяют закаленное стекло, не пропускающее инфракрасные лучи.

Таким образом, для изготовления солнечной батареи своими руками потребуются следующие материалы:

  • фотоэлементы в наборе;
  • крепежные метизы;
  • медные электропровода высокой мощности;
  • силиконовые вакуумные подставки;
  • паяльное оборудование;
  • алюминиевые уголки;
  • диоды Шотке;
  • прозрачный лист из поликарбоната или плексигласа;
  • набор винтов для крепежа.

Такие материалы приобретаются в магазине стройматериалов или в интернет-магазине.

Как сделать солнечные панели своими руками?

Для того чтобы сделать панели своими руками, нужно собрать требуемые материалы. Собирается солнечная батарея для дома в такой последовательности.

Чтобы правильно сделать солнечные батареи своими руками, нужно придерживаться следующих рекомендаций:

Получить бесплатную электроэнергию в своем доме мечтает каждый человек и эта мечта осуществима. Сделав солнечные батареи своими руками, можно наслаждаться дополнительным источником электроснабжения. При этом такая конструкция не наносит никакого вреда окружающей среде , к тому же она очень надежная и недорогостоящая.

Солнечная батарея – это несколько фотоэлементов, собранных в одном корпусе, снабжающих электричеством потребителя. Сами фотоэлементы с каждым днем становятся все доступнее, во многом благодаря тому, что их в хорошем качестве стал выпускать Китай.

Выбор фотоэлементов для солнечной батареи

  1. Поликристалл или монокристалл. Однозначного ответа нет, поликристаллические модули дешевле, но у них ниже энергоэффективность. Большинство промышленных производителей отдают предпочтение поликристаллическим фотоэлементам. В России ни те ни другие не производятся, следовательно делаем покупки на com или aliexpress.com.
  2. Размерность. Есть размеры 6х6(156 х 156 мм), 5х5 (127 127 мм), 6х2 (156 х 52 мм) дюйма. Следует брать последние. Дело в том, что все фотоэлементы очень тонкие и хрупкие, легко ломаются при монтаже, поэтому выгоднее сломать маленький фотоэлемент. Также, чем меньше размер одного элемента, тем легче заполнить площадь батареи.
  3. Припаянные контакты. Каждая пластина будет соединяться последовательно с другими, следовательно работать с паяльником придется много. Значительно облегчают эту работу припаянные контакты к панелям. Подключить такие контакты к общей шине будет гораздо проще. Если таких контактов нет, вам придется паять их самостоятельно.

Инструменты и материалы

Материалы:

  • Алюминиевый уголок 25х25;
  • Болты 5х10 мм – 8 шт;
  • Гайки 5 мм – 8 шт;
  • Стекло 5-6 мм;
  • Клей – герметик Sylgard 184;
  • Клей-герметик Ceresit CS 15;
  • Поликристаллические фотоэлементы;
  • Флюс фломастер (смесь канифоли и спирта);
  • Серебряная лента для подключения к фотоэлементам;
  • Лента для шины;
  • Припой (нужен тонкий, т.к. чрезмерный нагрев выведет из строя фотоэлемент);
  • Пенополиуретан (поролон), толщиной 3 см;
  • Плотная полиэтиленовая пленка 10 мкм.

Инструмент:

  • Напильник;
  • Ножовка по металлу с полотном 18;
  • Дрель, сверла на 5 и 6 мм;
  • Ключи рожковые;
  • Паяльник;

Пошаговая фотоинструкция

Максимально подробно рассказано, как своими руками собрать солнечную батарею из фотоэлементов на алюминиевом каркасе.

Сточить напильником углы на одной грани с каждой стороны алюминиевого угла под 45 градусов.


Обрезать уголки ножовкой по металлу под 45 градусов. Для удобства можно воспользоваться стуслом:



С каждой стороны уголка должна получиться вот такая конструкция:

Обрезанный алюминиевый уголок

Делаем скобы для соединения уголков:

Прикладываем уголки срезанными углами друг к другу
Перпендикулярно ставим уголок и на нем намечаем линию отреза Должно получиться 4 соединительных уголка

На сторонах каждой полученной скобы находим центр и сверлим отверстие, диаметром 6 мм:

Находим центр каждой стороны скобы
Отверстие в скобе

Делаем разметку через отверстие в каждой скобе на уголке. Чтобы потом не перепутать, помечаем каждый угол и каждую скобу цифрой:

Разметка отверстий «по месту»
Ставим цифры, чтобы потом не перепутать

Сверлим отверстия в уголке сверлом 5 мм, должно получиться так:

Отверстия в уголке

Собираем рамку с помощью болтов и гаек:

Вклеиваем с помощью герметика стекло в собранную рамку:

Силиконом следует обработать стыки снаружи и внутри

Обезжирить поверхность стекла изнутри и разложить фотоэлементы лицевой стороной вниз таким образом, чтобы контактные шины были параллельны:

Соедините между собой фотоэлементы скотчем, так они не распадутся при дальнейших операциях.

Соединить между собой элементы по схеме:

Схема соединения фотоэлементов в батарее

Собираем уплотняющую конструкцию:

  1. Из листа пенополиуретана вырезаем прямоугольник, меньше внутренней части рамки на 1 см с каждой стороны;
  2. Запаиваем получившийся прямоугольник в полиэтиленовую пленку с помощью скотча или паяльника

Конструкция укладывается внутрь рамки:

Поролон укладывается внутрь рамки

Рамка вместе с поролоном переворачивается и снимается. Остаются только уложенные и скрепленные между собой скотчем фотоэлементы:

Снять алюминиевую рамку
Фотоэлементы на поролоне

На всю поверхность фотоэлементов кистью наносится герметик Sylgard 184 и накрывается сверху рамкой со стеклом:

Герметик на фотоэлементах
Накрыть фотоэлементы рамкой со стеклом

Ставим груз на стекло на несколько часов, за это время должны удалиться пузыри воздуха:

Пузыри уходят за 2-3 часа

Через 12 часов снимаем груз и отрываем поролон. Батарея готова к подключению!

Ошибки при сборке солнечной батареи своими руками

Несколько характерных ошибок, совершаемых при самостоятельной сборке панелей, о которых хотелось бы предупредить.

  • Сборка на каркасе из дерева или ДСП. Солнечная батарея, собранная своими руками, окупается только если служит несколько лет, поэтому ненадежная конструкция из бруса для нее точно не подходит, т.к. разбухнет и потеряет форму через год – два. Конструкция получается громоздкой и тяжелой, плохо поддается транспортировке и переносу.
  • Небрежное хранение Sylgard 184. Если вы не расходуете всю банку этого клея, после использования его нужно переместить в меньшую тару, чтобы остатки не имели контакта с воздухом внутри нее. В противном случае, спустя полгода хранения весь клей может затвердеть.
  • Использование оргстекла. Батарея всегда находится на солнце (в этом её суть), поэтому сильно греется. Оргстекло очень плохо отводит тепло от фотоэлементов. Это снижает их эффективность. Каждый градус выше 25 °С снижает эффективность на 0,45%. Но это не главный минус оргстекла! При температуре больше 50 °С оно деформируется во всех плоскостях, разрывая контакты внутри схемы, разгерметизируя батарею и приводя ее в негодность.
  • Недостаточное внимание изолированию соединений. При сборке солнечных батарей для своего дома своими руками лучше использовать специальные коннекторы (MC4), соединяющие несколько панелей в единую сеть. Дело в том, что в дальнейшем, возможно, их придется демонтировать для ремонта, поворота в другую сторону, замены элементов и т.д. Скручивать контакты «намертво» или использовать для этой цели соединительные клеммы, которые предназначены для внутренних работ – не наилучший вариант.

Комментарии:

Похожие записи

Бестопливный генератор - способ заработать на безграмотности Окупаются ли солнечные батареи для частного дома Плюсы и минусы вертикальных ветрогенераторов, их виды и особенности
Статьи по теме: