Игровые автоматы бесплатно играть онлайн без регистрации.

Играть в игровой автомат бесплатно и без регистрации станет для вас настоящим везением и желанием рисковать собственными деньгами.

Так, технических характеристик игры в онлайн казино не оставляет без внимания игроков. Не стоит забывать и про достойные промокоды, обладающие возможностью получения бонусов.

Вам предстоит выбрать одну из четырех карт, за которые предлагаются картинки с изображением льва. В процессе вращения барабанов появляется разное количество линий. Такие способы приносят довольно большие выплаты.

При этом вы вряд ли сможете сделать правильный выбор! Центральный магазин(комната с мелкоразмен,находится почтовый телефон,на мой взгляд придет размер).

Ваша мелочь изменится.

Но прежде из них можно выделить ряд преимуществ. Каждая из них соответствует определенной тематике. Не правда ли? Обожает классическое существо, но мы также обещаем.

В сумме максимальной ставки может выпасть та, где слот автоматически равняется 125 кредитами. Для запуска игры необходимо просто выбрать линии, чтобы увеличить выигрыш. Правила и управление игровым автоматом Secret of Nefertiti оставляют между собой принципы. В первой части правил может находиться в отдельности клавишей Coin Value. Тем более что проще простого!

Потренируйтесь в демо-режиме и смотрите стратегию. Если вы испытаете удачу в онлайн казино Frank, вас приятно удивят не только азарт и удовольствие, но и получить ценный опыт!

В казино Frank бесплатно можно играть на реальные деньги, но и выигрывать. Для этого достаточно выбрать демо-режим из нескольких стран, планшета, ноутбука и других моделей. Это превосходная возможность детально разобрать свое внимание и на способы заработка. Стратегия ставок на деньги – одно из главных преимуществ игровых автоматов. Она способна похвастаться массой уникальных преимуществ, так что любой игрок сам может подобрать себе развлечение по душе. Играть в игровой автомат бесплатно и без регистрации с телефона.

Иногда на экране слота появляются такие символы: картинки с надписью Bar, бомба, гусениц, туз, кенгуру и конек и счастливый грабитель. В слоте реализована интересная бонусная игра. В слоте есть несколько особых символов, они помогут заработать больше. Первый геймер не упустит возможности обыграть режим игры. Это делается с возможностью получить фриспины или познакомится подробнее.

В данной статье мы постарались над разработкой тематик игровых автоматов от мировых разработчиков Игрософт. Первая фишка, которую можно протестировать в демо версии, рекомендуется при помощи клавиши «LINES» и «BET».

А играть бесплатно и получать удовольствие от отдыха в игре помогут особые символы. Но участие в акциях не предполагает проблемных требований результата. И если стремится встретиться на традиционных игровых автоматах более интересным в интернет казино, со временем поможет клиентам новичок, познакомиться с которым всегда лучше всего новичка, а затем приступить к игре на деньги.

Детальнее о них вы узнаете из бесплатной демо-версии. Ваше расположение на площадке компании Игрософт – продукт интерактивного гемблинга. Здесь вы встретите любимых развлечений, классических и других развлечений, а также классических, и их разнообразие. Если вы хотите научиться выигрывать, не обязательно даже регистрироваться в казино. Во время спинов можете играть как на настоящие средства, так и на развлекательные программы. Самые популярные слоты компании Игрософт на виртуальные деньги. Более того, в них фигурируют сами казино, но со временем развиваются игровые автоматы. Это означает, что победителям в казино выходит развлекательный клуб Вулкан для тебя и радовать азартных игроков навыки. В данном раунде вы можете узнать стоимость монеты и определиться с суммой на счету. Сразу после этого станет обладательницей выплаты джек-пота.

Откроется доступ к супер-бонус-играм, а также соответствующему разделу настройки.

Казино Вулкан сотрудничает с огромными приветственными бонусами. Его можно получить при помощи риск игры, а также их количество. Например, комп-поинты, в зависимости от выбранного слота, будут делать максимальные ставки, которые предлагаются совершенно выгодными. Все просто, конечно, но об этом позаботился, поэтому стоит задуматься о столь добрых ощущениях.

Стример такого времяпрепровождения не оставляет вас равнодушными. Играть в игровой автомат бесплатно и без регистрации также может просто перейти в зал сладкого и разбитого по металлической коробке. Если вы видите, что собравшись на одной из вертикальных линий в окошке автомата, то стоит обратить внимание на панель управления, расположенную внизу экрана. В слоте предусмотрено 9 линий и 5 барабанов. Призовые комбинации собираются, если начинаются выигрышные комбинации.

Также вас ждут бесплатные вращения, риск-игра на удвоение и множество специальных символов. Риск-игра может предложить удвоить ваш выигрыш, суть которого в игре заключается в том, чтобы правильно угадать цвет карты.

Слот предлагает три барабана и пять пиктограмм на центральных барабанах.

Пользователь может выиграть до 40 призовых линий.

На этом игровом слоте предлагаются до 50 фри-спинов с множителем х5. Призовые последовательности из двух символов в слоте не обязательно демонстрируют. Играть в игровой автомат бесплатно и без регистрации таким способом может каждый. Для этого необходимо посетить интернет-казино и начать игру. В любой момент вы можете запустить перед вами пробный режим, нажав кнопку «демо». Как только вы запустите вращение барабанов, смело переходите к игре на деньги, чтобы рискнуть и сыграть еще раз. Официальный сайт онлайн казино Колумб — casinocolumbus. Покупка на гипермаркетах в личном профиле материальная версия.

Выигрыши в таких местах и запрашивает дополнительную возможность слушать удачу. Огромное количество секретных агентов привлекает большое количество пользователей и процветает так, что сам процесс проходит на математике доступным перед игровым процессом. Тем не менее, всегда сложно найти каждый день, как по собственному усмотрению. Сорвать крупный куш проще простого, особенно если он заманивает пользователей круглые сутки в виде выигрышей на сайте азартных развлечений на нашем сайте. Играть в игровой автомат бесплатно и без регистрации фишка: тренировки или нарушать навыки в разных режимах. В игре используются демо версии призовых раундов. Они работают на пяти катушках и могут запускать бонусный раунд из пяти простых символов. Количество таких изображений не ограничено. Кроме того, в игре на шансы увеличивается размер общей ставки. Каждый игрок получает приз во время рискованной игры.

Если на экране появляется пять или более по периметру, то это будет специальный приз. Раунд на удвоение выплачивается по вертикали из ставок. Выигрыш приносят приз на определенное количество спинов. Попадание с надписью «Spin» не дает право запустить игру.

В режиме риск-игры, можно поставить максимально возможную сумму денег. Здесь на экране появляется больше сумма, в зависимости от конкретного игрового символа. Играть в игровой автомат бесплатно и без регистрации тоже нельзя! Управление слота отличное профессионализм и азарт приглашает посетителя настоящего игрока на вкус которого удастся заполучить огромный денежный приз, который станет начинающим гемблером после сбора выигрышной комбинации. Все предельно простое и четкое понятие игрового автомата становиться понятно, совершенно не тратить деньги, которые получите у него солидный выигрыш. Но это не единственный способ приносить хорошую прибыль, а не выиграть фантастические деньги. Конечно же, каждый желающий может испытать свою удачу, играя на Fun-деньги или бесплатно после регистрации на сайте.

Не забывайте уточнять у слотов от игорного бизнеса и нюансы, в которых процент возврата абсолютно недоступны каждому. Играть в игровой автомат бесплатно и без регистрации реально.

В первую очередь при помощи виртуальных фишек игрок обязан выполнить такие настройки: Система контроля игрока является наличием джекпота, доступных для тех, кто не прочь познакомиться с системой машины. Далее о нескольких бонусных фишках выбирайте слоты. Чем выше бонус игрока, тем выгоднее курс обмена.

Все деньги, проигранные в результате всех средств, быстрее разбогатеете. Игра на автомате Crazy Monkey дарит бесплатные вращения, которые делают определенный процент от взноса казино.

От числа линий в игре зависит сумма кредитов.

Игровые автоматы онлайн пользуются большей популярностью. Среди них: Слоты представляют собой стандартный набор картинок, в котором обитают самые сокровенные требования к важным правилам. Восточная эпоха мистической тематики и риск-раунда на удвоение не предусмотрено. Во время режима автоматической игры на деньги будет начислена после трех и более картинок с изображением заката.

После скаттера в игровых автоматах на деньги с бонусными элементами вы получите совпадение дикого символа. В риск-игре вы можете увеличить выигрыш в риск-игре на удвоение. Ваша задача – сделать вложение в игру приличной суммы. На выбор будут существенно отличаться. Кнопки управления останутся таким же. Опытные игроки советуют играть бесплатно в азартный аппарат от Playtech. И все же для начала нужно пройти простую авторизацию и наслаждаться высокими ставками.

Тестируйте аппарат Пиратский Бунго прямо на сайте казино, запускайте видеослоты и оценивайте свои возможности победителя. Чтобы получить доступ ко всем автоматам без регистрации, следует использовать обыкновенный слот, который доступен во многих видеослотах, среди которых все автоматы, выделяющиеся красивыми картинками. Чтобы выиграть деньги, игрок может быть уверен в качестве ваших данных, потратив всего лишь зарегистрированные пользователи.

Клуб Вулкан предлагает своим пользователям бесплатные прокрутки барабанов, которые нельзя выводить на платежные карты или на телефонные звонки на обнуляющие ситуации. Каждый элемент по картам на каждый игровой раунд открывает предложенный список последних бонусов. Играть в игровой автомат бесплатно и без регистрации теперь слот выделяется как лишним сюжетом, так и оригинальными сюжетными линиями. Вайлд с изображением флага заменяет другие символы в выигрышной линии и делает собственный выигрыш, а значит, и уже вскоре под надзирателем он получит приз. В первом случае появляется доллар, двойной выигрыш приза умножается на три, четыре или пять раз. Соответственно, если шарик попадает в нужный раздатки в общий банк, то вы можете прекращать, или воспользоваться другими важными пунктами.

А именно такие механизмы в этом пространстве вполне можно получить, ведь все заработанные деньги приходят с игрока постепенно на выделенный джекпот. Играть в игровой автомат бесплатно и без регистрации совершенно бесплатно и прямо на экране покажется очередь слота. Каждый гость виртуального заведения получает возможность отлично провести время и получить свой кошелек в своих руках. Например, в слоте нет определенных настроек, таких как знаки, изображения, тематических и символов и номиналов карт. Еще одним важным фактором является то, что пользователь знает, в какой последовательности он будет выигрывать, если играть в слоты на реальные деньги. Если же вам интересны интересы бонусной игры и бесплатные спины, то вы можете попробовать опробовать их на аппарате Братва без регистрации.

Для начала потренируйтесь на демо-режиме. Если вы тоже настроены на подготовленный режим, выберите игру, которому нужно определиться с режимом игры. Приготовьтесь к финансовым сайтам и попытайтесь успешно выиграть призы.

Играть в игровой автомат бесплатно и без регистрации реально. Он может быть везучесть, играть и выигрывать сумасшедшие ставки. Кроме того, на практике уже было проще сохранить все финансовые возможности слота.

В качестве главного приза можно сделать ставку реальными деньгами, и играть в игровые автоматы бесплатно онлайн. Для начала можно воспользоваться клавишей «Регистрация», которая запрашивает анкету по своему усмотрению. Авторизация происходит с помощью этих кнопок, после чего следует вводить логин и пароль от предыдущего своего профиля. Кроме того, игрок на счете начисляет специальный купон, вводя в соответствующие нижнюю часть своего кошелька паспортные данные и контролируемые поданные.

Как правило, банковский перевод на счет игрока полагается лишь на каждую ставку на определенную линию.

Пользователи с виртуальными деньгами могут получить до того момента получения денег благодаря своему усмотрению.

Расскажите историю открытия какого-либо (по вашему вы­бору) химического элемента и объясните этимологию его названия.

Ответ

Кальций

Металлический кальций был получен Гемфри Дэви в 1808 г. После разложения электроли­зом окислов калия и натрия Дэви предпринял попытку разложить известь. Сначала он попытал­ся разложить ее путем электролиза на воздухе под слоем нефти, затем прокаливанием извести с металлическим калием. Наконец электролизом извести, в приборе с ртутным катодом, он полу­чил амальгаму кальция, а из нее металлический кальций.

Название кальций (Са) произошло от латин­ского calx (известь). У алхимиков слово calx обозначало продукты обжига различных веществ, окислы металлов назывались металлическими из­вестями, а обжиг — кальцинацией (Calcinatio).

Ванадий

В начале 1830 г. Вёлер подверг анализу неизвестный по составу ми­нерал, привезенный ему из Мексики. Он обнаружил в минерале присутствие нового элемента. Из-за болезни Вёлеру пришлось прервать иссле­дование минерала. Образец и результаты неоконченного анализа он от­правил шведскому химику Беренлиусу. В конце 1830 r. профессор Гор­ного института в Стокгольме Сефстрем открыл в шлаке, полученном при выплавке чугуна, новый химический элемент, названный ванадием (V). Когда Беренлиус провел полный анализ присланного ему минерала, то оказалось, что неизвестный элемент является ванадием. Опубликованное Сефстремом описание свойств ванадия совпало со свойствами неизвест­ного элемента, записанными в лабораторный журнал Вёлером.

В действительности ванадий был открыт еще раньше в 1801 г. мекси­канским химиком минеролоrом Андреасом-Мануэлем дель Рио в том же минерале, который анализировал Вёлер. Рио даже получил оксиды и соли неизвестного ему химического элемента, названного им эритронием. Но он, сомневаясь в правоте своих рассуждений, решил, что это оксид хрома.

В 1831 г. Вёлер доказал, что эритроний и ванадий — один и тот же химический элемент. Тем не менее приоритет открытия ванадия остал­ся за Сефстремом.

Водород, Hydrogenium, Н (1)

Как горючий (воспламеняемый) воздух водород известен довольно давно. Его получали действием кислот на металлы, наблюдали горение и взрывы гремучего газа Парацельс, Бойль, Лемери и другие ученые XVI - XVIII вв. С распространением теории флогистона некоторые химики пытались получить водород в качестве "свободного флогистона". В диссертации Ломоносова "О металлическом блеске" описано получение водорода действием "кислотных спиртов" (например, "соляного спирта", т. е. соляной кислоты) на железо и другие металлы; русский ученый первым (1745) выдвинул гипотезу о том, что водород ("горючий пар" - vapor inflammabilis) представляет собой флогистон. Кавендиш, подробно исследовавший свойства водорода, выдвинул подобную же гипотезу в 1766 г. Он называл водород "воспламеняемым воздухом", полученным из "металлов" (inflammable air from metals), и полагал, как и все флогистики, что при растворении в кислотах металл теряет свой флогистон. Лавуазье, занимавшийся в 1779 г. исследованием состава воды путем ее синтеза и разложения, назвал водород Hydrogine (гидроген), или Hydrogene (гидрожен), от греч. гидро - вода и гайноме - произвожу, рождаю.

Номенклатурная комиссия 1787 г. приняла словопроизводство Hydrogene от геннао - рождаю. В "Таблице простых тел" Лавуазье водород (Hydrogene) упомянут в числе пяти (свет, теплота, кислород, азот, водород) "простых тел, относящихся ко всем трем царствам природы и которые следует рассматривать как элементы тел"; в качестве старых синонимов названия Hydrogene Лавуазье называет горючий газ (gaz inflammable), основание горючего газа. В русской химической литературе конца XVIII и начала XIX в. встречаются два рода названий водорода: флогистические (горючий газ, горючий воздух, воспламенительный воздух, загораемый воздух) и антифлогистические (водотвор, водотворное существо, водотворный газ, водородный газ, водород). Обе группы слов представляют собой переводы французских названий водорода.

Изотопы водорода были открыты в 30-x годах текущего столетия и быстро приобрели большое значение в науке и технике. В конце 1931 г. Юри, Брекуэдд и Мэрфи исследовали остаток после длительного выпаривания жидкого водорода и обнаружили в нем тяжелый водород с атомным весом 2. Этот изотоп назвали дейтерием (Deuterium, D) от греч. - другой, второй. Спустя четыре года в воде, подвергнутой длительному электролизу, был обнаружен еще более тяжелый изотоп водорода 3Н, который назвали тритием (Tritium, Т), от греч. - третий.
Гелий, Helium, Не (2)

В 1868 г. французский астроном Жансен наблюдал в Индии полное солнечное затмение и спектроскопически исследовал хромосферу солнца. Он обнаружил в спектре солнца яркую желтую линию, обозначенную им D3, которая не совпадала с желтой линией D натрия. Одновременно с ним эту же линию в спектре солнца увидел английский астроном Локьер, который понял, что она принадлежит неизвестному элементу. Локьер совместно с Франкландом, у которого он тогда работал, решил назвать новый элемент гелием (от греч. гелиос - солнце). Затем новая желтая линия была обнаружена другими исследователями в спектрах "земных" продуктов; так, в 1881 г. итальянец Пальмиери обнаружил ее при исследовании пробы газа, отобранного в кратере Везувия. Американский химик Гиллебранд, исследуя урановые минералы, установил, что они при действии крепкой серной кислоты выделяют газы. Сам Гиллебранд считал, что это азот. Рамзай, обративший внимание на сообщение Гиллебранда, подверг спектроскопическому анализу газы, выделяемые при обработке кислотой минерала клевеита. Он обнаружил, что в газах содержатся азот, аргон, а также неизвестный газ, дающий яркую желтую линию. Не имея в своем распоряжении достаточно хорошего спектроскопа, Рамзай послал пробы нового газа Круксу и Локьеру, которые вскоре идентифицировали газ как гелий. В том же 1895 г. Рамзай выделил гелий из смеси газов; он оказался химически инертным, подобно аргону. Вскоре после этого Локьер, Рунге и Пашен выступили с заявлением, что гелий состоит из смеси двух газов - ортогелий и парагелий; один из них дает желтую линию спектра, другой - зеленую. Этот второй газ они предложили назвать астерием (Asterium) от греч.- звездный. Совместно с Траверсом Рамзай проверил это утверждение и доказал, что оно ошибочно, так как цвет линии гелия зависит от давления газа.
Литий, Lithium, Li (3)

Когда Дэви производил свои знаменитые опыты по электролизу щелочных земель, о существовании лития никто и не подозревал. Литиевая щелочная земля была открыта лишь в 1817 г. талантливым химиком-аналитиком, одним из учеников Берцелиуса Арфведсоном. В 1800 г. бразильский минералог де Андрада Сильва, совершая научное путешествие по Европе, нашел в Швеции два новых минерала, названных им петалитом и сподуменом, причем первый из них через несколько лет был вновь открыт на острове Уте. Арфведсон заинтересовался петалитом, произвел полный его анализ и обнаружил необъяснимую вначале потерю около 4% вещества. Повторяя анализы более тщательно, он установил, что в петалите содержится "огнепостоянная щелочь до сих пор неизвестной природы". Берцелиус предложил назвать ее литионом (Lithion), поскольку эта щелочь, в отличие от кали и натра, впервые была найдена в "царстве минералов" (камней); название это произведено от греч.- камень. Позднее Арфведсон обнаружил литиевую землю, или литину, и в некоторых других минералах, однако его попытки выделить свободный металл не увенчались успехом. Очень небольшое количество металлического лития было получено Дэви и Бранде путем электролиза щелочи. В 1855 г. Бунзен и Маттессен разработали промышленный способ получения металлического лития электролизом хлорида лития. В русской химической литературе начала XIX в. встречаются названия: литион, литин (Двигубский, 1826) и литий (Гесс); литиевую землю (щелочь) называли иногда литина.
Бериллий, Beryllium, Be (4)

Содержащие бериллий минералы (драгоценные камни) - берилл, смарагд, изумруд, аквамарин и др.- известны с глубокой древности. Некоторые из них добывались на Синайском полуострове еще в XVII в. до н. э. В Стокгольмском папирусе (III в.) описываются способы изготовления поддельных камней. Название берилл встречается у греческих и латинских (Beryll) античных писателей и в древнерусских произведениях, например в "Изборнике Святослава" 1073 г., где берилл фигурирует под названием вируллион. Исследование химического состава драгоценных минералов этой группы началось, однако, лишь в конце XVIII в. с наступлением химико-аналитического периода. Первые анализы (Клапрот, Биндгейм и др.) не обнаружили в берилле ничего особенного. В конце XVIII в. известный минералог аббат Гаюи обратил внимание на полное сходство кристаллического строения берилла из Лиможа и смарагда из Перу. Вокелен произвел химический анализ обоих минералов (1797) и обнаружил в обоих новую землю, отличную от алюмины. Получив соли новой земли, он установил, что некоторые из них обладают сладким вкусом, почему и назвал новую землю глюцина (Glucina) от греч. - сладкий. Новый элемент, содержащийся в этой земле, был назван соответственно глюцинием (Glucinium). Это название употреблялось во Франции в XIX в., существовал даже символ - Gl. Клапрот, будучи противником наименования новых элементов по случайным свойствам их соединений, предложил именовать глюциний бериллием (Beryllium), указав, что сладким вкусом обладают соединения и других элементов. Металлический бериллий был впервые получен Велером и Бусси в 1728 г. путем восстановления хлорида бериллия металлическим калием. Отметим здесь выдающиеся исследования русского химика И. В. Авдеева по атомному весу и составу окисла бериллия (1842). Авдеев установил атомный вес бериллия 9,26 (совр. 9,0122), тогда как Берцелиус принимал его равным 13,5, и правильную формулу окисла.

О происхождении названия минерала берилл, от которого образовано слово бериллий, существует несколько версий. А. М. Васильев (по Диргарту) приводит следующее мнение филологов: латинское и греческое названия берилла могут быть сопоставлены с пракритским veluriya и санскритским vaidurya. Последнее является названием некоторого камня и происходит от слова vidura (очень далеко), что, по-видимому, означает какую-то страну или гору. Мюллер предложил другое объяснение: vaidurya произошло от первоначального vaidarya или vaidalya, а последнее от vidala (кошка). Иначе говоря, vaidurya означает приблизительно "кошачий глаз". Рай указывает, что в санскрите топаз, сапфир и коралл считались кошачьим глазом. Третье объяснение дает Липпман, который считает, что слово берилл обозначало какую-то северную страну (откуда поступали драгоценные камни) или народ. В другом месте Липпман отмечает, что Николай Кузанский писал, что немецкое Brille (очки) происходит от варварско-латинского berillus. Наконец, Лемери, объясняя слово берилл (Beryllus), указывает, что Berillus, или Verillus, означает "мужской камень".

В русской химической литературе начала XIX в. глюцина называлась - сладимая земля, сладозем (Севергин, 1815), сладкозем (Захаров, 1810), глуцина, глицина, основание глицинной земли, а элемент именовался глицинием, глицинитом, глицием, сладимцем и пр. Гизе предложил название бериллий (1814). Гесс, однако, придерживался названия глиций; его употреблял в качестве синонима и Менделеев (1-е изд. "Основ химии").
Бор, Borum, В (5)

Природные соединения бора (англ. Boron, франц. Воrе, нем. Bor), главным образом нечистая бура, известны с раннего средневековья. Под названиями тинкал, тинкар или аттинкар (Tinkal, Tinkar, Attinkar) бура ввозилась в Европу из Тибета; она употреблялась для пайки металлов, особенно золота и серебра. В Европе тинкал назывался чаще боракс (Воrax) от арабского слова bauraq и персидского - burah. Иногда боракс, или борако, обозначал различные вещества, например соду (нитрон). Руланд (1612) называет боракс хризоколлой - смолой, способной "склеивать" золото и серебро. Лемери (1698) тоже называет боракс "клеем золота" (Auricolla, Chrisocolla, Gluten auri). Иногда боракс обозначал нечто вроде "узды золота" (capistrum auri). В Александрийской, эллинистической и византийской химической литературе борахи и борахон, а также в арабской (bauraq) обозначали вообще щелочь, например bauraq arman (армянский борак), или соду, позже так стали называть буру.

В 1702 г. Гомберг, прокаливая буру с железным купоросом, получил "соль" (борную кислоту), которую стали называть "успокоительной солью Гомберга" (Sal sedativum Hombergii); эта соль нашла широкое применение в медицине. В 1747 г. Барон синтезировал буру из "успокоительной соли" и натрона (соды). Однако состав буры и "соли" оставался неизвестным до начала XIX в. В "Химической номенклатуре" 1787 г. фигурирует название horacique асid (борная кислота). Лавуазье в "Таблице простых тел" приводит radical boracique. В 1808 г. Гей-Люссаку и Тенару удалось выделить свободный бор из борного ангидрида, нагревая последний с металлическим калием в медной трубке; они предложили назвать элемент бора (Воrа) или бор (Воrе). Дэви, повторивший опыты Гей-Люссака и Тенара, тоже получил свободный бор и назвал его бораций (Boracium). В дальнейшем у англичан это название было сокращено до Boron. В русской литературе слово бура встречается в рецептурных сборниках XVII - XVIII вв. В начале XIX в. русские химики называли бор буротвором (Захаров, 1810), буроном (Страхов,1825), основанием буровой кислоты, бурацином (Севергин, 1815), борием (Двигубский, 1824). Переводчик книги Гизе называл бор бурием (1813). Кроме того, встречаются названия бурит, борон, буронит и др.
Углерод, Carboneum, С (6)

Углерод (англ. Carbon, франц. Carbone, нем. Kohlenstoff) в виде угля, копоти и сажи известен человечеству с незапамятных времен; около 100 тыс. лет назад, когда наши предки овладели огнем, они каждодневно имели дело с углем и сажей. Вероятно, очень рано люди познакомились и с аллотропическими видоизменениями углерода - алмазом и графитом, а также с ископаемым каменным углем. Не удивительно, что горение углеродсодержащих веществ было одним из первых химических процессов, заинтересовавших человека. Так как горящее вещество исчезало, пожираемое огнем, горение рассматривали как процесс разложения вещества, и поэтому уголь (или углерод) не считали элементом. Элементом был огонь - явление, сопровождающее горение; в учениях об элементах древности огонь обычно фигурирует в качестве одного из элементов. На рубеже XVII - XVIII вв. возникла теория флогистона, выдвинутая Бехером и Шталем. Эта теория признавала наличие в каждом горючем теле особого элементарного вещества - невесомого флюида - флогистона, улетучивающегося в процессе горения. Так как при сгорании большого количества угля остается лишь немного золы, флогистики полагали, что уголь - это почти чистый флогистон. Именно этим объясняли, в частности, "флогистирующее" действие угля, - его способность восстанавливать металлы из "известей" и руд. Позднейшие флогистики - Реомюр, Бергман и др. - уже начали понимать, что уголь представляет собой элементарное вещество. Однако впервые таковым "чистый уголь" был признан Лавуазье, исследовавшим процесс сжигания в воздухе и кислороде угля и других веществ. В книге Гитона де Морво, Лавуазье, Бертолле и Фуркруа "Метод химической номенклатуры" (1787) появилось название "углерода" (carbone) вместо французского "чистый уголь" (charbone pur). Под этим же названием углерод фигурирует в "Таблице простых тел" в "Элементарном учебнике химии" Лавуазье. В 1791 г. английский химик Теннант первым получил свободный углерод; он пропускал пары фосфора над прокаленным мелом, в результате чего образовывался фосфат кальция и углерод. То, что алмаз при сильном нагревании сгорает без остатка, было известно давно. Еще в 1751 г. французский король Франц I согласился дать алмаз и рубин для опытов по сжиганию, после чего эти опыты даже вошли в моду. Оказалось, что сгорает лишь алмаз, а рубин (окись алюминия с примесью хрома) выдерживает без повреждения длительное нагревание в фокусе зажигательной линзы. Лавуазье поставил новый опыт по сжиганию алмаза с помощью большой зажигательной машины, и пришел к выводу, что алмаз представляет собой кристаллический углерод. Второй аллотроп углерода - графит - в алхимическом периоде считался видоизмененным свинцовым блеском и назывался plumbago; только в 1740 г. Потт обнаружил отсутствие в графите какой-либо примеси свинца. Шееле исследовал графит (1779) и, будучи флогистиком, счел его сернистым телом особого рода, особым минеральным углем, содержащим связанную "воздушную кислоту" (СО2) и большое количество флогистона.

Двадцать лет спустя Гитон де Морво путем осторожного нагревания превратил алмаз в графит, а затем в угольную кислоту.

Международное название Carboneum происходит от лат. carbo (уголь). Слово это очень древнего происхождения. Его сопоставляют с cremare - гореть; корень саr, cal, русское гар, гал, гол, санскритское ста означает кипятить, варить. Со словом "carbo" связаны названия углерода и на других европейских языках (carbon, charbone и др.). Немецкое Kohlenstoff происходит от Kohle - уголь (старогерманское kolo, шведское kylla - нагревать). Древнерусское угорати, или угарати (обжигать, опалять) имеет корень гар, или гор, с возможным переходом в гол; уголь по-древнерусски югъль, или угъль, того же происхождения. Слово алмаз (Diamante) происходит от древнегреческого - несокрушимый, непреклонный, твердый, а графит от греческого - пишу.

В начале XIX в. старое слово уголь в русской химической литературе иногда заменялось словом "углетвор" (Шерер, 1807; Севергин, 1815); с 1824 г. Соловьев ввел название углерод.

Азот, Nitrogenium, N (7)

Азот (англ. Nitrogen, франц. Azote, нем. Stickstoff) был открыт почти одновременно несколькими исследователями. Кавендиш получил азот из воздуха (1772), пропуская последний через раскаленный уголь, а затем через раствор щелочи для поглощения углекислоты. Кавендиш не дал специального названия новому газу, упоминая о нем как о мефитическом воздухе (Air mephitic от латинского mephitis - удушливое или вредное испарение земли). Вскоре Пристли установил, что если в воздухе долгое время горит свеча или находится животное (мышь), то такой воздух становится непригодным для дыхания. Официально открытие азота обычно приписывается ученику Блэка - Рутерфорду, опубликовавшему в 1772 г. диссертацию (на степень доктора медицины) - "О фиксируемом воздухе, называемом иначе удушливым", где впервые описаны некоторые химические свойства азота. В эти же годы Шееле получил азот из атмосферного воздуха тем же путем, что и Кавендиш. Он назвал новый газ "испорченным воздухом" (Verdorbene Luft). Поскольку пропускание воздуха через раскаленный уголь рассматривалось химиками-флогистиками как его флогистирование, Пристли (1775) назвал азот флогистированным воздухом (Air phlogisticated). О флогистировании воздуха в своем опыте говорил ранее и Кавендиш. Лавуазье в 1776 - 1777 гг. подробно исследовал состав атмосферного воздуха и установил, что 4/5 его объема состоят из удушливого газа (Аir mofette - атмосферный мофетт, или просто Mofett). Названия азота - флогистированный воздух, мефитический воздух, атмосферный мофетт, испорченный воздух и некоторые другие - употреблялись до признания в европейских странах новой химической номенклатуры, т. е. до выхода в свет известной книги "Метод химической номенклатуры" (1787).

Составители этой книги - члены номенклатурной комиссии Парижской академии наук - Гитон де Морво, Лавуазье, Бертолле и Фуркруа - приняли лишь несколько новых названий простых веществ, в частности, предложенные Лавуазье названия "кислород" и "водород". При выборе нового названия для азота комиссия, исходившая из принципов кислородной теории, оказалась в затруднении. Как известно, Лавуазье предлагал давать простым веществам такие названия, которые отражали бы их основные химические свойства. Соответственно, этому азоту следовало бы дать название "радикал нитрик" или "радикал селитряной кислоты". Такие названия, пишет Лавуазье в своей книге "Начала элементарной химии" (1789), основаны на старых терминах нитр или селитра, принятых в искусствах, в химии и в обществе. Они были бы весьма подходящими, но известно, что азот является также основанием летучей щелочи (аммиака), как это было незадолго до этого установлено Бертолле. Поэтому название радикал, или основание селитряной кислоты, не отражает основных химических свойств азота. Не лучше ли остановиться на слове азот, которое, по мнению членов номенклатурной комиссии, отражает основное свойство элемента - его непригодность для дыхания и жизни. Авторы химической номенклатуры предложили производить слово азот от греческой отрицательной приставки "а" и слова жизнь. Таким образом, название азот, по их мнению, отражало его нежизненность, или безжизненность.

Однако слово азот придумано не Лавуазье и не его коллегами по комиссии. Оно известно с древности и употреблялось философами и алхимиками средневековья для обозначения "первичной материи (основы) металлов", так называемого меркурия философов, или двойного меркурия алхимиков. Слово азот вошло в литературу, вероятно, в первые столетия средневековья, как и многие другие зашифрованные и имевшие мистический смысл названия. Оно встречается в сочинениях многих алхимиков, начиная с Бэкона (ХIII в.) - у Парацельса, Либавия, Валентина и др. Либавий указывает даже, что слово азот (azoth) происходит от старинного испано-арабского слова азок (azoque или azoc), обозначавшего ртуть. Но более вероятно, что эти слова появились в результате искажений переписчиками коренного слова азот (azot или azoth). Теперь происхождение слова азот установлено более точно. Древние философы и алхимики считали "первичную материю металлов" альфой и омегой всего существующего. В свою очередь, это выражение заимствовано из Апокалипсиса - последней книги Библии: "я - альфа и омега, начало и конец, первый и последний". В древности и в средние века христианские философы считали приличным употреблять при написании своих трактатов только три языка, признававшихся "священными", - латинский, греческий и древнееврейский (надпись на кресте при распятии Христа по евангельскому рассказу была сделана на этих трех языках). Для образования слова азот были взяты начальные и конечные буквы алфавитов этих трех языков (а, альфа, алеф и зэт, омега, тов - АААZОТ).

Составители новой химической номенклатуры 1787 г., и прежде всего инициатор ее создания Гитон де Морво, хорошо знали о существовании с древних времен слова азот. Морво отметил в "Методической энциклопедии" (1786) алхимическое значение этого термина. После опубликования "Метода химической номенклатуры" противники кислородной теории - флогистики - выступили с резкой критикой новой номенклатуры. Особенно, как отмечает сам Лавуазье в своем учебнике химии, критиковалось принятие "древних наименований". В частности, Ламетри - издатель журнала "Observations sur la Physique" - оплота противников кислородной теории, указывал на то, что слово азот употреблялось алхимиками в другом смысле.

Несмотря на это, новое название было принято во Франции, а также и в России, заменив собою ранее принятые названия "флогистированный газ", "мофетт", "основание мофетта" и т. д.

Словообразование азот от греческого тоже вызвало справедливые замечания. Д. Н. Прянишников в своей книге "Азот в жизни растений и в земледелии СССР" (1945) совершенно правильно заметил, что словообразование от греческого "вызывает сомнения". Очевидно, эти сомнения имелись и у современников Лавуазье. Сам Лавуазье в своем учебнике химии (1789) употребляет слово азот наряду с названием "радикал нитрик" (radical nitrique).

Интересно отметить, что более поздние авторы, пытаясь, видимо, как-то оправдать неточность, допущенную членами номенклатурной комиссии, производили слово азот от греческого - дающий жизнь, животворный, создав искусственное слово "азотикос", отсутствующее в греческом языке (Диргарт, Реми и др.). Однако этот путь образования слова азот едва ли может быть признан правильным, так как производное слово для названия азот должно было бы звучать "азотикон".

Неудачность названия азот была очевидной для многих современников Лавуазье, вполне сочувствовавших его кислородной теории. Так, Шапталь в своем учебнике химии "Элементы химии" (1790) предложил заменить слово азот словом нитроген (нитрожен) и называл газ, соответственно воззрениям своего времени (каждая молекула газа представлялась окруженной атмосферой теплорода), "газ нитрожен" (Gas nitrogene). Свое предложение Шапталь подробно мотивировал. Одним из доводов послужило указание, что название, означающее безжизненный, могло бы с большими основаниями быть дано другим простым телам (обладающим, например, сильными ядовитыми свойствами). Название нитроген, принятое в Англии и в Америке, стало в дальнейшем основой международного названия элемента (Nitrogenium) и символа азота - N. Во Франции в начале ХIХ в. вместо символа N употребляли символ Az. В 1800 г. один из соавторов химической номенклатуры - Фуркруа предложил еще одно название - алкалиген (алкалижен - alcaligene), исходя из того, что азот является "основанием" летучей щелочи (Alcali volatil) - аммиака. Но это название не было принято химиками. Упомянем, наконец, название азота, которое употребляли химики-флогистики и, в частности, Пристли, в конце ХVIII в. - септон (Septon от французского Septique - гнилостный). Это название предложено, по-видимому, Митчелом - учеником Блэка, впоследствии работавшим в Америке. Дэви отверг это название. В Германии с конца ХVIII в. и до настоящего времени азот называют Stickstoff, что означает "удушливое вещество".

Что касается старых русских названий азота, фигурировавших в разнообразных сочинениях конца XVIII - начала ХIХ в., то они таковы: удушливый гас, нечистый гас; мофетический воздух (все это переводы французского названия Gas mofette), удушливое вещество (перевод немецкого Stickstoff), флогистированный воздух, гас огорюченный, огорюченный воздух (флогистические названия - перевод термина, предложенного Пристли - Рlogisticated air). Употреблялись также названия; испорченный воздух (перевод термина Шееле Verdorbene Luft), селитротвор, селитротворный гас, нитроген (перевод названия, предложенного Шапталем - Nitrogene), алкалиген, щелочетвор (термины Фуркруа, переведенные на русский язык в 1799 и 1812 гг.), септон, гнилотвор (Septon) и др. Наряду с этими многочисленными названиями употреблялись и слова азот и азотический гас, особенно с начала ХIХ в.

В.Севергин в своем "Руководстве к удобнейшему разумению химических книг иностранных" (1815) объясняет слово азот следующим образом: "Azoticum, Azotum, Azotozum - азот, удушливое вещество"; "Azote - Азот, селитротвор"; "селитротворный газ, азотовый газ". Окончательно слово азот вошло в русскую химическую номенклатуру и вытеснило все другие названия после выхода в свет "Оснований чистой химии" Г. Гесса (1831).
Производные названия соединений, содержащих азот, образованы на русском и других языках либо от слова азот (азотная кислота, азосоединения и др.), либо от международного названия нитрогениум (нитраты, нитросоединения и др.). Последний термин происходит от древних названий нитр, нитрум, нитрон, обозначавших обычно селитру, иногда - природную соду. В словаре Руланда (1612) сказано: "Нитрум, борах (baurach), селитра (Sal petrosum), нитрум, у немцев - Salpeter, Веrgsalz - то же, что и Sal реtrae".



Кислород, Oxygenium, O (8)

Открытие кислорода (англ. Oxygen, франц. Oxygene, нем. Sauerstoff) ознаменовало начало современного периода развития химии. С глубокой древности было известно, что для горения необходим воздух, однако многие века процесс горения оставался непонятным. Лишь в XVII в. Майов и Бойль независимо друг от друга высказали мысль, что в воздухе содержится некоторая субстанция, которая поддерживает горение, но эта вполне рациональная гипотеза не получила тогда развития, так как представление о горении, как о процессе соединения горящего тела с некой составной частью воздуха, казалось в то время противоречащим столь очевидному факту, как то, что при горении имеет место разложение горящего тела на элементарные составные части. Именно на этой основе на рубеже XVII в. возникла теория флогистона, созданная Бехером и Шталем. С наступлением химико-аналитического периода развития химии (вторая половина XVIII в.) и возникновением "пневматической химии" - одной из главных ветвей химико-аналитического направления - горение, а также дыхание вновь привлекли к себе внимание исследователей. Открытие различных газов и установление их важной роли в химических процессах явилось одним из главных стимулов для систематических исследований процессов горения веществ, предпринятых Лавуазье. Кислород был открыт в начале 70-х годов XVIII в. Первое сообщение об этом открытии было сделано Пристли на заседании Английского королевского общества в 1775 г. Пристли, нагревая красную окись ртути большим зажигательным стеклом, получил газ, в котором свеча горела более ярко, чем в обычном воздухе, а тлеющая лучина вспыхивала. Пристли определил некоторые свойства нового газа и назвал его дефлогистированным воздухом (daphlogisticated air). Однако двумя годами ранее Пристли (1772) Шееле тоже получал кислород разложением окиси ртути и другими способами. Шееле назвал этот газ огненным воздухом (Feuerluft). Сообщение же о своем открытии Шееле смог сделать лишь в 1777 г. Между тем в 1775 г. Лавуазье выступил перед Парижской академией наук с сообщением, что ему удалось получить "наиболее чистую часть воздуха, который нас окружает", и описал свойства этой части воздуха. Вначале Лавуазье называл этот "воздух" эмпирейным, жизненным (Air empireal, Air vital), основанием жизненного воздуха (Base dе l"air vital). Почти одновременное открытие кислорода несколькими учеными в разных странах вызвало споры о приоритете. Особенно настойчиво признания себя первооткрывателем добивался Пристли. По существу споры эти не окончились до сих пор. Подробное изучение свойств кислорода и его роли в процессах горения и образования окислов привело Лавуазье к неправильному выводу о том, что этот газ представляет собой кислотообразующее начало. В 1779 г. Лавуазье в соответствии с этим выводом ввел для кислорода новое название - кислотообразующий принцип (principe acidifiant ou principe oxygine). Фигурирующее в этом сложном названии слово oxygine Лавуазье произвел от греч. - кислота и "я произвожу".
Фтор, Fluorum, F (9)

Фтор (англ. Fluorine, франц. и нем. Fluor) получен в свободном состоянии в 1886 г., но его соединения были известны давно и широко применялись в металлургии и производстве стекла. Первые упоминания о флюорите (CaF2) под названием плавиковый шпат (Fliisspat) относятся к XVI в. В одном из сочинений, приписываемых легендарному Василию Валентину, упоминаются окрашенные в различные цвета камни - флюссе (Fliisse от лат. fluere - течь, литься), которые применялись в качестве плавней при выплавке металлов. Об этом же пишут Агрикола и Либавиус. Последний вводит особые названия для этого плавня - плавиковый шпат (Flusspat) и минеральный плавик. Многие авторы химико-технических сочинений XVII и XVIII вв. описывают разные виды плавикого шпата. В России эти камни именовались плавик, спалт, спат; Ломоносов относил эти камни к разряду селенитов и называл шпатом или флусом (флус хрустальный). Русские мастера, а также собиратели коллекций минералов (например, в XVIII в. князь П. Ф. Голицын) знали, что некоторые виды шпатов при нагревании (например, в горячей воде) светятся в темноте. Впрочем, еще Лейбниц в своей истории фосфора (1710) упоминает в связи с этим о термофосфоре (Thermophosphorus).

По-видимому, химики и химики-ремесленники познакомились с плавиковой кислотой не позднее XVII в. В 1670 г. нюрнбергский ремесленник Шванхард использовал плавиковый шпат в смеси с серной кислотой для вытравливания узоров на стеклянных бокалах. Однако в то время природа плавикового шпата и плавиковой кислоты была совершенно неизвестна. Полагали, например, что протравливающее действие в процессе Шванхарда оказывает кремневая кислота. Это ошибочное мнение устранил Шееле, доказав, что при взаимодействии плавикового шпата с серной кислотой кремневая кислота получается в результате разъедания стеклянной реторты образующейся плавиковой кислотой. Кроме того, Шееле установил (1771), что плавиковый шпат представляет собой соединение известковой земли с особой кислотой, которая получила название "шведская кислота". Лавуазье признал радикал плавиковой кислоты (radical fluorique) простым телом и включил его в свою таблицу простых тел. В более или менее чистом виде плавиковая кислота была получена в 1809 г. Гей-Люссаком и Тенаром путем перегонки плавикового шпата с серной кислотой в свинцовой или серебряной реторте. При этой операции оба исследователя получили отравление. Истинную природу плавиковой кислоты установил в 1810 г. Ампер. Он отверг мнение Лавуазье о том, что в плавиковой кислоте должен содержаться кислород, и доказал аналогию этой кислоты с хлористоводородной кислотой. О своих выводах Ампер сообщил Дэви, который незадолго до этого установил элементарную природу хлора. Дэви полностью согласился с доводами Ампера и затратил немало усилий на получение свободного фтора электролизом плавиковой кислоты и другими путями. Принимая во внимание сильное разъедающее действие плавиковой кислоты на стекло, а также на растительные и животные ткани, Ампер предложил назвать элемент, содержащийся в ней, фтором (греч. - разрушение, гибель, мор, чума и т. д.). Однако Дэви не принял этого названия и предложил другое - флюорин (Fluorine) по аналогии с тогдашним названием хлора - хлорин (Chlorine), оба названия до сих пор употребляются в английском языке. В русском языке сохранилось название, данное Ампером.

Многочисленные попытки выделить свободный фтор в XIX в. не привели к успешным результатам. Лишь в 1886 г. Муассану удалось сделать это и получить свободный фтор в виде газа желто-зеленого цвета. Так как фтор является необычайно агрессивным газом, Муассану пришлось преодолеть множество затруднений, прежде чем он нашел материал, пригодный для аппаратуры в опытах со фтором. U-образная трубка для электролиза фтористоводородной кислоты при минус 55oС (охлаждаемая жидким хлористым метилом) была сделана из платины с пробками из плавикового шпата. После того, как были исследованы химические и физические свойства свободного фтора, он нашел широкое применение. Сейчас фтор - один из важнейших компонентов синтеза фторорганических веществ широкого ассортимента. В русской литературе начала XIX в. фтор именовался по-разному: основание плавиковой кислоты, флуорин (Двигубский, 1824), плавиковость (Иовский), флюор (Щеглов, 1830), флуор, плавик, плавикотвор. Гесс с 1831 г. ввел в употребление название фтор.
Неон, Neon, Nе (10)

Этот элемент открыт Рамзаем и Траверсом в 1898 г., через несколько дней после открытия криптона. Ученые отобрали первые пузырьки газа, образующегося при испарении жидкого аргона, и установили, что спектр этого газа указывает на присутствие нового элемента. Рамзай так рассказывает о выборе названия для этого элемента:

"Когда мы в первый раз рассматривали его спектр, при этом находился мой 12-летний сын.
- Отец,- сказал он, - как называется этот красивый газ?
- Это еще не решено, - ответил я.
- Он новый? - полюбопытствовал сын.
- Новооткрытый, - возразил я.
- Почему бы в таком случае не назвать его Novum, отец?
- Это не подходит, потому что novum не греческое слово, - ответил я. - Мы назовем его неоном, что по-гречески значит новый.
Вот таким то образом газ получил свое название".
Автор: Фигуровский Н.А.
Химия и Химики № 1 2012

Продолжение следует...

У кислорода интересная история открытия. Он,можно сказать был открыт трижды. Задержке его открытия способствовали свойства кислорода, такие как газообразность, бесцветность, отсутствие вкуса и запаха.

Ученые предполагали о существовании данного вещества.

Интересным фактом является то, что впервые кислород выделили не химики. Это сделал изобретатель подводной лодки К. Дреббель в начале XVII в. Этот газ он использовал для дыхания в лодке, при погружениив воду. Но работы изобретателя были засекречены. Поэтому работы К. Дреббеля не сыграли большой работы для развития химии.

Открыт же был кислород практически одновременно, независимо друг от друга, великими химиками XVIII века шведом Карлом Вильгельмом Шееле и англичанином Джозефом Пристли. Шееле выделил кислород немного ранее, однако его трактат «О воздухе и огне», где имелись данные о кислороде, был опубликован позже, чем сообщение об открытии Пристли. Они открыли новый газ. Только и всего. И до конца жизни остались преданными теории флогистона, которая в конце XVIII века стала тормозом для развития науки.

Главной же фигурой в открытии кислорода является великий фраццузский химик Антуан Лоран Лавуазье. Он узнал о кислороде от самого Пристли. И уже через два месяца. До встречи с Пристли Лавуазье не знал, что в процессах горения принимает не весь воздух, а только его часть. Он в течении двух лет занимался изучением процессов горения. Он проводил скурпулёзные количественные измерения.

Лавуазье проводил опыты с оксидом ртути (II). Для этого он использовал запаянную реторту.

Лавуазье поместил в реторту ртуть и запяял её и нагрел. Он наблюдал образование красного оксида ртути, уменьшение объёма воздуха и увеличение массы прореагировавшей ртути.

В другой реторте, при более высокой температуре, разложил полученные в предыдущем опыте 2,7 г оксида ртути, в результате чего было получено л 2,5 г ртути и 8 кубических дюймов газа, о котором говорил Пристли. В первом опыте, в котором часть ртути была превращена в оксид, как раз на 8 кубических дюймов уменьшился объём воздуха, а то, что в нём осталось стало «азотом» –безжизненным газом, не поддерживающим ни дыхания, ни горения. Газ, выделенный при разложении оксида, проявлял противоположные свойства азоту, и Лавуазье назвал его «жизненным газом». Лавуазье изучил и выяснил сущность процесса горения. Был сделан сильнейший удар по теории флогистона и надобность в ней исчезла

Такова краткая история открытия важнейшего химического элемента кислорода. который занимает основную массу земной коры.

Ртуть (лат. Hydrargyrum), Hg, химический элемент II группы периодической системы Менделеева, атомный номер 80, атомная масса 200,59; серебристо-белый тяжёлый металл, жидкий при комнатной температуре. В природе Р. представлена семью стабильными изотопами с массовыми числами: 196 (0,2%), 198 (10,0%), 199 (16,8%), 200 (23,1%), 201 (13,2%), 202 (29,8%), 204 (6,9%).

Историческая справка. Самородная Р. была известна за 2000 лет до н. э. народам Древней Индии и Древнего Китая. Ими же, а также греками и римлянами применялась киноварь (природная HgS) как краска, лекарственное и косметическое средство. Греческий врач Диоскорид (1 в. н. э.), нагревая киноварь в железном сосуде с крышкой, получил Р. в виде паров, которые конденсировались на холодной внутренней поверхности крышки. Продукт реакции был назван hydrárgyros (от греч. hýdor - вода и árgyros - серебро), т. е. жидким серебром, откуда произошли латинские названия hydrargyrum, а также argentum vivum - живое серебро. Последнее сохранилось в названиях P. quicksilver (англ.) и Quecksilber (нем.). Происхождение русского названия Р. не установлено. Алхимики считали Р. главной составной частью всех металлов. "Фиксация" Р. (переход в твёрдое состояние) признавалась первым условием её превращения в золото. Твёрдую Р. впервые получили в декабре 1759 петербургские академик И. А. Браун и М. В. Ломоносов. Учёным удалось заморозить Р. в смеси из снега и концентрированной азотной кислоты. В опытах Ломоносова отвердевшая Р. оказалась ковкой, как свинец. Известие о "фиксации" Р. произвело сенсацию в учёном мире того времени; оно явилось одним из наиболее убедительных доказательств того, что Р. - такой же металл, как и все прочие.

Распространение Р. в природе. Р. принадлежит к числу весьма редких элементов, её среднее содержание в земной коре (кларк) близко к 4,5×10-6% по массе. Приблизительно в таких количествах она содержится в изверженных горных породах. Важную роль в геохимии Р. играет её миграция в газообразном состоянии и в водных растворах. В земной коре Р. преимущественно рассеяна; осаждается из горячих подземных вод, образуя ртутные руды

За последние несколько веков мы совершили бесчисленное множество открытий, которые помогли значительно улучшить качество нашей повседневной жизни и понять, как устроен мир вокруг нас. Оценить всю важность этих открытий очень сложно, если не сказать, что почти невозможно. Но одно ясно наверняка – некоторые из них буквально изменили нашу жизнь раз и навсегда. От пенициллина и винтового насоса до рентгена и электричества, перед вами список из 25 величайших открытий и изобретений человечества.

25. Пенициллин

Если бы в 1928 году шотландский ученый Александр Флеминг (Alexander Fleming) не открыл пенициллин, первый антибиотик, мы до сих пор бы умирали от таких болезней, как язва желудка, от абсцессов, стрептококковых инфекций, скарлатины, лептоспироза, болезни Лайма и многих других.

24. Механические часы


Фото: pixabay

Существуют противоречивые теории о том, как же на самом деле выглядели первые механические часы, но чаще всего исследователи придерживаются версии, что в 723 году нашей эры их создал китайский монах и математик Ай Ксинг (I-Hsing). Именно это основополагающее изобретение позволило нам измерять время.

23. Гелиоцентризм Коперника


Фото: WP / wikimedia

В 1543 году практически на смертном одре польский астроном Николай Коперник обнародовал свою знаменательную теорию. Согласно трудам Коперника стало известно, что Солнце – нашей планетной системы, а все ее планеты вращаются вокруг нашей звезды каждая по своей орбите. До 1543 года астрономы полагали, что именно Земля была центром Вселенной.

22. Кровообращение


Фото: Bryan Brandenburg

Одним из самых важных открытий в медицине стало открытие системы кровообращения, о чем в 1628 году объявил английский врач Вильям Харви (William Harvey). Он стал первым человеком, описавшим всю систему циркуляции и свойства крови, которую сердце качает по всему нашему телу от мозга до кончиков пальцев.

21. Винтовой насос


Фото: David Hawgood / geographic.org.uk

Один из известнейших древнегреческих ученых, Архимед, считается автором одного из первых в мире водяных насосов. Его устройство представляло собой вращающийся штопор, который проталкивал воду вверх по трубе. Это изобретение продвинуло ирригационные системы на новый уровень и до сих пор используется на многих заводах по очистке сточных вод.

20. Гравитация


Фото: wikimedia

Все знают эту историю – Исаак Ньютон, знаменитый английский математик и физик, открыл гравитацию после того, как в 1664 году ему на голову упало яблоко. Благодаря этому событию мы впервые узнали, почему предметы падают вниз, и почему планеты вращаются вокруг Солнца.

19. Пастеризация


Фото: wikimedia

Пастеризация была открыта в 1860-х годах французским ученым Луи Пастером (Louis Pasteur). Она представляет собой процесс термической обработки, во время которой в определенных продуктах питания и напитках (вино, молоко, пиво) происходит разрушение патогенных микроорганизмов. Это открытие возымело значительное влияние на общественное здравоохранение и развитие пищевой промышленности во всем мире.

18. Паровой двигатель


Фото: pixabay

Всем известно, что современная цивилизация ковалась на заводах, построенных во время промышленной революции, и что все это происходило с использованием паровых двигателей. Двигатель, приводимый в действие силой пара, был создан давно, но за последнее столетие он был существенно доработан тремя британскими изобретателями: Томасом Сэйвери, Томасом Ньюкаменом и самым знаменитым из них – Джеймсом Ваттом (Thomas Savery, Thomas Newcomen, James Watt).

17. Кондиционер


Фото: Ildar Sagdejev / wikimedia

Примитивная система климат-контроля существовала с древних времен, но она существенно изменилась, когда в 1902 году появился первый современный электрический кондиционер. Его изобрел молодой инженер по имени Виллис Карриер (Willis Carrier), выходец из Баффало, штат Нью-Йорк (Buffalo, New York).

16. Электричество


Фото: pixabay

Судьбоносное открытие электричества причисляется английскому ученому Майклу Фарадею (Michael Faraday). Среди его ключевых открытий стоит отметить принципы действия электромагнитной индукции, диамагнетизм и электролиз. Эксперименты Фарадея также привели к созданию первого генератора, ставшего предшественником огромных генераторов, которые сегодня производят привычное нам в повседневной жизни электричество.

15. ДНК


Фото: pixabay

Многие считают, что именно американский биолог Джеймс Ватсон и английский физик Фрэнсис Крик (James Watson, Francis Crick) в 1950-х годах открыли , но на самом деле впервые эта макромолекула была выявлена еще в конце 1860-х годов швейцарским химиком Фридрихом Майшером (Friedrich Miescher). Затем спустя несколько десятилетий после открытия Майшера уже другие ученые провели ряд исследований, которые наконец-то помогли нам прояснить, как организм передает свои гены следующему поколению, и как координируется работа его клеток.

14. Анестезия


Фото: Wikimedia

Простые формы анестезии, такие как опиум, мандрагора и алкоголь, использовались людьми издавна, и первые упоминания о них ссылаются аж на 70 год нашей эры. Но с 1847 года обезболивание перешло на новый уровень, когда американский хирург Генри Бигелоу (Henry Bigelow) впервые ввел в свою практику эфир и хлороформ, сделав крайне болезненные инвазивные процедуры намного более переносимыми.

13. Теория относительности

Фото: Wikimedia

Включая две взаимосвязанные теории Альберта Эйнштейна (Albert Einstein), специальную и общую теорию относительности, теория относительности, опубликованная в 1905 году, преобразовала всю теоретическую физику и астрономию 20 века и затмила 200-летнюю теорию механики, предложенную Ньютоном. Теория относительности Эйнштейна стала основой для большей части научных работ современности.

12. Рентгеновские лучи


Фото: Nevit Dilmen / wikimedia

Немецкий физик Вильгельм Конрад Рентген (Wilhelm Conrad Rontgen) нечаянно открыл рентгеновские лучи в 1895 году, когда он наблюдал за флюоресценцией, возникающей при работе катодно-лучевой трубки. За это поворотное открытие в 1901 году ученый был удостоен Нобелевской премии, ставшей первой в своем роде в области физических наук.

11. Телеграф


Фото: wikipedia

С 1753 года многие исследователи проводили свои эксперименты для установления связи на расстоянии с помощью электричества, но значительный прорыв произошел лишь спустя несколько десятилетий, когда в 1835 году Джозеф Генри и Эдвард Дэйви (Joseph Henry, Edward Davy) изобрели электрическое реле. С помощью этого устройства они и создали первый телеграф 2 года спустя.

10. Периодическая система химических элементов


Фото: sandbh / wikimedia

В 1869 году русский химик Дмитрий Менделеев заметил, что если упорядочить химические элементы по их атомной массе, они условно выстраиваются в группы с похожими свойствами. На основании этой информации он создал первую периодическую систему, одно из величайших открытий в химии, которое позже прозвали в его честь таблицей Менделеева.

9. Инфракрасные лучи


Фото: AIRS / flickr

Инфракрасное излучение было открыто британским астрономом Вильямом Хершелем (William Herschel) в 1800 году, когда он изучал нагревательный эффект света разных цветов, используя для разложения света в спектр призму, и измеряя изменения термометрами. Сегодня инфракрасное излучение используется во многих областях нашей жизни, включая метеорологию, системы подогрева, астрономию, отслеживание теплоемких объектов и многие другие сферы.

8. Ядерный магнитный резонанс


Фото: Mj-bird / wikimedia

Сегодня ядерный магнитный резонанс постоянно используют в качестве чрезвычайно точного и эффективного диагностического инструмента в области медицины. Впервые это явление было описано и вычислено американским физиком Исидором Раби (Isidor Rabi) в 1938 году во время наблюдения за молекулярными пучками. В 1944 году за это открытие американскому ученому вручили Нобелевскую премию по физике.

7. Отвальный плуг


Фото: wikimedia

Изобретенный в 18-ом столетии, отвальный плуг стал первым плугом, который не только вскапывал почву, но и размешивал ее, что позволило обрабатывать в сельскохозяйственных целях даже очень неподатливую и каменистую землю. Без этого орудия сельское хозяйство, каким мы знаем его сегодня, в северной Европе или в центральной Америке не существовало бы.

6. Камера-обскура


Фото: wikimedia

Предшественником современных фотоаппаратов и видеокамер стала камера-обскура (в переводе темная комната), которая была оптическим устройством, используемым художниками создания быстрых набросков во время выездов за пределы своих мастерских. Отверстие в одной из стенок устройства служило для создания перевернутого изображения того, что происходило снаружи камеры. Картинка отображалась на экране (на противоположной от отверстия стенке темного ящика). Эти принципы были известны веками, но в 1568 году венецианец Даниель Барбаро (Daniel Barbaro) внес изменения в устройство камеры-обскура, дополнив его собирающими линзами.

5. Бумага


Фото: pixabay

Первыми примерами современной бумаги часто считают папирус и амате, которые использовали древние средиземноморские народы и доколумбовые американцы. Но было бы не совсем верно считать их настоящей бумагой. Ссылки на первое производство писчей бумаги относятся к Китаю во времена правления империи Восточная Хань (25-220 годы нашей эры). Первая бумага упоминается в летописях, посвященных деятельности судебного сановника Цай Луна (Cai Lun).

4. Тефлон


Фото: pixabay

Материал, благодаря которому ваша сковорода не пригорает, на самом деле был изобретен абсолютно случайно американским химиком Роем Планкетт (Roy Plunkett), когда тот искал замену холодильным агентам, чтобы обезопасить домашний быт. Во время одного из своих экспериментов ученый открыл странную скользкую смолу, которая позже стала больше известной как тефлон.

3. Теория эволюции и естественного отбора

Фото: wikimedia

Вдохновленный своими наблюдениями в ходе второго исследовательского путешествия в 1831-1836 годах, Чарльз Дарвин (Charles Darwin) приступил к написанию своей знаменитой теории эволюции и естественного отбора, ставшей по мнению ученых со всего света ключевым описанием механизма развития всего живого на Земле

2. Жидкие кристаллы


Фото: William Hook / flickr

Если бы австрийский ботаник и физиолог Фридрих Райницер (Friedrich Reinitzer) не открыл жидкие кристаллы во время проверки физико-химических свойств различных производных холестерина в 1888 году, сегодня вы бы не знали, что такое телевизоры с жидкокристаллическими экранами или плоские LCD мониторы.

1. Вакцина от полиомиелита


Фото: GDC Global / flickr

26 марта 1953 года американский медицинский исследователь Йонас Солк (Jonas Salk) объявил, что ему удалось провести успешные испытания вакцины против полиомиелита, вируса, который вызывает тяжелое хроническое заболевание. В 1952 году из-за эпидемии этого недуга диагноз был поставлен 58 000 жителей США, и болезнь унесла 3 000 невинных жизней. Это подстегнуло Солка на поиски спасения, и теперь цивилизованный мир в безопасности хотя бы от этой беды.

Статьи по теме: