Электрохимический потенциал в нелинейной динамике. Электрохимический потенциал

В химической термодинамике для характеристики свойств систем, не содержащих заряженные частицы, и в которых изменение состава происходит в результате протекания химических реакций или фазовых превращений используют фундаментальное уравнение Гиббса, выраженное через характеристическую функцию :

где - химический потенциал -го реагента, а - бесконечно малое изменение количества этого реагента.

При рассмотрении явлений в гетерогенных системах, необходимо учитывать к какой фазе относятся величины , , , , . Принадлежность к определенной фазе указывается верхним индексом, например - , . Условием равновесия в гетерофазной системе при постоянных температуре и давлении (Т и Р – const) является равенство химических потенциалов , где и - химические потенциалы нейтрального вещества в двух сосуществующих фазах.

Если компонент представляет собой заряженную частицу, то его состояние зависит еще и от величины электрического поля. При перемещении заряженных частиц в фазе в электрическом поле, перенос массы компонента связан с переносом заряда . Фундаментальное уравнение Гиббса в этом случае должно иметь вид:

где - - внутренний потенциал какой либо фазы, то есть внутренний потенциал той части системы, в которой находится данная частица.

Внутренним потенциалом называется работа переноса единичного отрицательного воображаемого заряда из бесконечно удаленной точки А, находящейся в вакууме, в точку В, находящуюся внутри проводящей фазы .

Термин «воображаемый» предполагает, что этот единичный заряд реагирует только на внешнее электрическое поле и не взаимодействует со средой.

Так как , где - заряд -го иона с учетом знака заряда; - постоянная Фарадея, - число молей i -го вещества, то после преобразований получаем:

Все производные энергии Гиббса по обобщенным координатам имеют смысл обобщенных сил. Поэтому - это обобщенная сила в явлениях переноса заряженных частиц в электрическом поле. По аналогии с химическим потенциалом, для электрохимических систем, величина

Называется электрохимическим потенциалом .

При перемещении одного моля реальных заряженных частиц (с зарядом ) из бесконечности в вакууме вглубь проводящей фазы (например, фазы ), затраченная работа состоит из двух частей: электростатической равной и химической, обусловленной взаимодействием реальных частиц с данной фазой, то есть химическим потенциалом компонента в фазе .

Фундаментальное уравнение Гиббса тогда запишется:

Рассмотрим равновесие на границе раздела фаз. Предположим, что на границе раздела фаз протекает электрохимическая реакция (электродная реакция)


где и - стехиометрический коэффициент i -го вещества или иона (для исходных веществ стехиометрические коэффициенты принимают отрицательные значения, а для продуктов реакции - положительные), z - общее число электронов участвующих в электродной реакции (полуреакции).

При протекании химической реакции количества отдельных реагентов изменяются пропорционально их стехиометрическим коэффициентам в уравнении реакции. Взаимную пропорциональность величин dn i можно выразить совокупностью уравнений:

Таким образом, перераспределение количеств всех веществ в системе можно выразить с помощью единственной переменной, которая обозначается x и называется химической переменной . Дифференциал химической переменной определяется с помощью любого из приведенных выше уравнений:

dn i = n I dx ;

Тогда с учетом этого выражения для dG получим

dG = – S dT + V dp + . (3.5)

При постоянной температуре и постоянном давлении условием равновесия в системе является минимум энергии Гиббса. Это означает, что для равновесной системы

В этом уравнении суммируются электрохимические потенциалы и стехиометрические коэффициенты всех участников электрохимической реакции, независимо от того, в какой фазе они находятся.

Равновесие на электроде характеризуется равенством электрохимических потенциалов компонентов во всех фазах. В случае их неравенства происходит переход заряженных частиц через границу раздела фаз, что вызывается стремлением системы к термодинамическому равновесию. В результате этого нарушается баланс электрических зарядов в каждой фазе, металл и раствор приобретают электрический заряд и на границе их раздела возникает скачок потенциала. Другими словами между фазами электрода возникает определенная разность потенциалов, обусловленная природой составляющих электрод компонентов, их концентрациями и значениями внешних термодинамических параметров .

Этот скачек потенциала называется гальвани-потенциалом (потенциалом электрода) и обозначается . Гальвани-потенциал определяется разностью внутренних потенциалов обеих фаз: .

Рис. Возникновение скачка потенциала (гальвани-потенциала ) на границе раздела фазы и фазы .

Рассмотрим механизм возникновения скачка потенциала на примере наиболее часто встречающихся электродов с границей раздела фаз металл – раствор. Существуют такие металлы, что если их опустить в воду или в раствор, то ионы металла переходят в прилегающий к поверхности металла слой воды или раствора по реакции .

Этот переход происходит в том случае, если электрохимический потенциал иона металла в кристалле больше чем электрохимический потенциал сольватированного иона в растворе. Металл можно представить состоящим из положительно заряженных ионов металла и относительно свободных электронов. По мере перехода ионов в раствор, состояние системы постепенно изменяется. Металл приобретает отрицательный заряд, величина которого увеличивается по мере протекания электрохимической реакции. В связи с этим электрохимический потенциал ионов металла на поверхности уменьшается. Количество ионов в растворе возрастает, и их электрохимический потенциал увеличивается вследствие отталкивания одноименных ионов. В результате этого скорость перехода ионов в раствор уменьшается, а скорость обратного процесса – перехода ионов из раствора на металл возрастает. Наконец наступает такое состояние, при котором скорости обоих процессов становятся одинаковыми, то есть в системе наступает равновесие. При этом металл приобретает отрицательный заряд, которому соответствует определенный потенциал, а в растворе образуется избыток катионов, которые удерживаются у поверхности металлического электрода в результате действия электростатических сил и этому слою соответствует свой потенциал. Эти потенциалы называются внутренними потенциалами и обозначаются , где индекс указывает, к какой фазе относится потенциал. В результате, на границе раздела фаз металл – раствор образуется, так называемый двойной электрический слой , которому соответствует определенная разность потенциалов, называемая гальвани-потенциалом -

(например, ).

Для определения величины гальвани-потенциала, возникающего на границе раздела фаз и необходимо экспериментально определить разность электрохимических потенциалов в этих фазах. Так как , то

Из уравнения следует, что измерение гальвани-потенциала между точками в разных фазах возможно лишь при условии равенства химических потенциалов веществ в разных фазах, то есть при . В этом случае, получим:

Отсюда следует, что на границе раздела двух фаз различного состава экспериментально определить гальвани-потенциал невозможно.

Величина гальвани-потенциала зависит от свойств фаз, образующих границу раздела и от концентрации ионов в растворе.

В общем случае, для электрохимической реакции

протекающей на границе раздела фаз, условие равновесия, в соответствие с (3.6) запишется:

где и - заряды частиц окисленной и восстановленной форм, и - потенциалы фаз, содержащих окисленную и восстановленную формы вещества. После преобразования уравнения получим:

В соответствии с балансом зарядов ,

где - суммарный заряд ионов, участвующих в реакции в фазе, содержащей восстановленную форму вещества, а - суммарный заряд ионов, участвующих в реакции в фазе, содержащей окисленную форму вещества. Для произвольных жидких и твердых растворов химический потенциал i -го компонента выражается через его активность уравнением . Учитывая, что - гальвани-потенциал, получаем:

Так как стандартный химический потенциал компонента равен значению его стандартной энергии Гиббса, получим

j °, которая называется

где j ° - стандартный электродный потенциал; R – универсальная газовая постоянная;

T –температура, К; F – постоянная Фарадея; - число электронов, участвующих в электродном процессе; и - активность окисленной и восстановленной форм.

Полученное уравнение называется уравнением Нернста. Стандартный электродный потенциал j ° - это величина, характерная для каждого электродного процесса, которая также зависит от температуры и природы растворителя. Стандартный электродный потенциал равен потенциалу электрода в котором отношение активностей всех участников электродной реакции равны единице. Уравнение Нернста связывает величину разности потенциалов между фазой раствора электролита и фазой проводника первого рода с активностями компонентов, участвующих в электродной реакции.

В качестве примера установления электрохимического равновесия рассмотрим наиболее простой случай – равновесие на границе металла с раствором, содержащим ионы этого металла. На электроде будет протекать следующая электрохимическая реакция:

Равновесие устанавливается в результате перехода ионов металла из объема раствора на металл и обратно при условии выполнения равенства (3.6) .

Объединив все постоянные величины в одну величину - j °, которая называется стандартным электродным потенциалом , получим выражение для разности потенциалов между фазами, составляющими электрод:

Комбинация констант R, F и температуры (RT / F) часто встречается в электрохимических уравнениях; она имеет размерность напряжения. Общепринято обозначать ее как b 0 . Часто уравнение Нернста записывается через десятичные логарифмы. Переход к десятичным логарифмам осуществляется путем умножения b 0 на ln10 = 2,3 (это произведение обозначается как b). При 298 К значения b 0 и b соответственно равны:

Значения постоянной b при других температурах могут быть легко рассчитаны.

Следует отметить, что в общем случае при записи уравнения Нернста под логарифмом остаются только те величины, которые могут варьироваться. Таким образом, при записи уравнения Нернста для разных случаев необходимо соблюдать несколько правил, связанных с применением выражения (3.9) для различных типов электродов:

1. Активности чистых компонентов, образующих отдельную фазу постоянного состава, (как правило, это твердые вещества) принимаются равными единице.

2. Активность растворителя принимается равной единице.

3. Вместо активностей газообразных веществ в уравнение входят относительные парциальные давления этих газов над раствором . Давление приводится относительно стандартного (1 бар = 10 5 Па), т. о. эта величина является безразмерной, хотя численно она совпадает с парциальным давлением газа, выраженным в барах.

Использование парциальных давлений справедливо для случая не очень высоких давлений (порядка нескольких бар). В случае высоких давлений необходимо использовать фугитивности газов.

Мы остановились на двух основных пассивных электрических характеристиках клеточных мембран–емкости и проводимости. Перейдем теперь к рассмотрению электрохимического потенциала, являющегося источником энергии для активных электрических процессов, протекающих в мембране, и обусловливающего потенциал покоя. Именно электрохимический потенциал служит первопричиной почти всех электрических процессов, протекающих в живых системах. Как мы вскоре увидим, он обусловлен двумя основными свойствами всех эукариотических клеток: 1) асимметричным распределением ионов между вне– и внутриклеточной жидкостями, поддерживаемым метаболическими процессами; 2) избирательной проницаемостью ионных каналов клеточных мембран.

Проведем такой мысленный эксперимент (рис. 5–11). Представим, что некий сосуд разделен на два отсека мембраной, проницаемой только для ионов калия. Пусть в начале нашего эксперимента в обоих отсеках содержится 0,01 М раствор KCl. Если мы поместим в эти отсеки по электроду, то никакой разности потенциалов между ними не будет. Поскольку наша мембрана пропускает только ионы K + , но не Cl¯, ионы калия будут диффундировать через мембрану без своих «спутников» – анионов. При этом в среднем число ионов калия, проходящих из отсека I в отсек II и наоборот, будет одинаковым (концентрации растворов в обоих отсеках равны) и суммарный ток K + будет равен 0. Поэтому и разность потенциалов по обе стороны мембраны тоже будет равна 0 (рис. 5–11,А). Теперь мысленно добавим в отсекI дополнительное количество KCl так, чтобы концентрация его возросла до 0,1 М (т. е. в 10 раз превысила концентрацию в отсеке II; рис. 5–11,Б ). Поскольку содержание ионов К + в отсеке I станет выше, будет наблюдаться суммарный диффузионный ток этих ионов из отсека I в отсек II. Это приведет к тому, что число положительных зарядов в последнем увеличится. Вследствие этого в отсеке II быстро будет нарастать положительный потенциал, и стрелка вольтметра укажет на наличие разности потенциалов между отсеками (рис. 5–11,B ). Достигнув определенного уровня, эта разность потенциалов будет поддерживаться бесконечно долго (если только мембрана абсолютно непроницаема для ионов Cl¯).

Рис. 5.11. Электрохимическое равновесие. А. Некая емкость разделена мембраной, проницаемой только для ионов К + , на два отсека (I и II), в каждом из которых содержатся растворыKCl в концентрации 0,01 М. Б.Если увеличить концентрацию KCl в отсеке 1 до 0,1 М, то возникнет небольшой результирующий ток ионов К + в раствор II, который будет поддерживаться до тех пор, пока ЭДС, действующая на эти ионы, не уравновесит влияние их концентрационного градиента (В). После наступления равновесия суммарный поток ионов К + через мембрану станет равным нулю. Г. Механическая модель, имитирующая электрохимическое равновесие. Аналогом разности потенциалов, возникающей в результате диффузии того или иного иона через полупроницаемую мембрану, служит растяжение пружины, а аналогом концентрационного градиента, движущей силы этой диффузии, – масса груза. Сила тяжести, вызывающая растяжение пружины, равна силе упругости.

Почему же между двумя отсеками возникает и постоянно поддерживается разность потенциалов? Дело в том, что после увеличения концентрации KCl в отсеке I на каждый ион К + , диффундирующий через калиевые каналы из отсека II в отсек I, в среднем приходится 10 ионов К + , переходящих в обратном направлении. Таким образом, разность концентраций К + представляет собой химический градиент, или «химическую разность потенциалов», приводящий к суммарному диффузионному току через мембрану из отсека I в отсек II (рис. 5–11,Б ). Поскольку Cl¯ не может переходить через мембрану вместе с К + , переход в отсек II каждого иона калия приводит к повышению содержания в этом отсеке положительных зарядов. По мере того как ионы калия накапливаются в отсеке II, трансмембранная разность потенциалов быстро возрастает, поскольку по одну сторону мембраны уже имеется избыток положительных зарядов, а по другую –отрицательных (см. рис. 5–9). Переход К + в отсек II сопровождается повышением положительного потенциала в этом отсеке, поэтому дальнейшая диффузия ионов калия становится все более затрудненной из–за взаимного отталкивания положительных зарядов. Таким образом, на каждый ион К + , проходящий через мембрану по калиевым каналам, действуют теперь две силы – химическая разность потенциалов, способствующая переходу К + из отсека I в отсек II, и электрическая разность потенциалов, заставляющая ионы калия двигаться в обратном направлении (рис 5–11,B ). После того как в результате накопления ионов К + в отсеке II на мембране возникнет определенная разность потенциалов, эти две силы уравновесятся: стремление К + диффундировать по концентрационному градиенту будет сбалансировано электростатической силой – трансмембранной разностью потенциалов. При этом говорят, что ионы К + находятся в электрохимическом равновесии, а разность потенциалов, возникающая на мембране при таком состоянии, называется равновесным потенциалом для данного иона (в данном случае эта разность потенциалов представляет собой равновесный калиевый потенциал E к).

Состояние равновесия между концентрационным градиентом для какого–либо иона и возникающей в результате перемещения этого иона разностью потенциалов можно проиллюстрировать с помощью простой аналогии, приведенной на рис. 5–11 ,Г. Представим, что мы потихоньку отпускаем груз, подвешенный на пружине. По мере того как груз под действием силы тяжести будет опускаться, он будет растягивать пружину и сила ее упругости будет возрастать. В конечном счете эта сила станет равна силе тяжести, и груз будет удерживаться растянутой пружиной в определенном положении; система придет в равновесие. Сила тяжести груза в данном случае аналогична химическому градиенту, а сила упругости, возникающая в пружине, – трансмембранной разности потенциалов. Сила тяжести груза вызывает растяжение пружины и увеличение силы упругости, причем последняя возрастает до тех пор, пока не становится равной силе тяжести и груз не перестает опускаться. Точно так же переход зарядов из отсека I в отсек II приводит к появлению электрической силы (разности потенциалов), а та в свою очередь препятствует дальнейшему переносу зарядов и уравновешивает разность концентраций ионов по обе стороны мембраны.

Если какой–либо ион находится в состоянии электрохимического равновесия, суммарный ток этого иона через мембрану (даже если он может свободно переходить через нее) отсутствует. С другой стороны, если для того или иного иона, присутствующего в растворе, мембрана непроницаема, то он не влияет на состояние равновесия. Так, в нашей воображаемой системе ионы Cl¯ отнюдь не находятся в электрохимическом равновесии (они стремятся перейти из отсека I в отсек II), однако они абсолютно не влияют на мембранный потенциал, поскольку не могут диффундировать через мембрану.

Важно также отметить, что состояние равновесия наступает в результате диффузии из одного отсека в другой лишь очень небольшого количества ионов (по сравнению с их общим содержанием в растворе). Так, в нашем мысленном эксперименте концентрации КCl в обоих отсеках к концу опыта практически не изменились, поскольку число этих ионов, перешедших из отсека I в отсек II, пренебрежимо мало по сравнению с их общим содержанием в растворе. Подробнее этот вопрос рассмотрен в дополнении 5–1.

Дыхательная цепь – это совокупность red-ox реакций в результате которых Н2 и электроны переносятся на О2 с выделением Н2О и энергии. В результате окислительных реакций в цикле Кребса, катализируемых дегидрогеназами, протоны и электроны переходят от органических субстратов на кофакторы НАД и ФАД, восстанавливая их в НАДН иФАДН2. Эти вещества обладают высоким энергетическим потенциалом. Электроны от них передаются на О2 ч/з ряд red-ox реакций. Окисление органических веществ в клетках сопровождающееся потреблением О2 и образованием Н2О называется тканевым дыханием, а цепь переноса электронов – дыхательной цепью.

Молекулы НАДН и ФАДН2, образуемые в реакциях окисления углеводов, жирных кислот, спиртов и АК, далее поступают в митохондрии, где ферментами дыхательной цепи осуществляется процесс окислительного фосфорилирования.

Дыхательная цепь является частью процесса окислительного фосфорилирования. Компоненты дыхательной цепи катализируют перенос электронов от НАДН + Н+ или восстановленного убихинона (QH2) на молекулярный кислород. Из-за большой разности окислительно-восстановительных потенциалов донора (НАДН + Н+ и, соответственно, (QH2) и акцептора (О2) реакция является высокоэкзергонической. Большая часть выделяющейся при этом энергии используется для создания градиента протонов и, наконец, для образования АТФ с помощью АТФ-синтазы.

Принцип работы дыхательной цепи:

1) Образующиеся в реакциях катаболизма НАДН и ФАДН2 передают атомы водорода (т.е. протоны водорода и электроны) на ферменты дыхательной цепи.

2) Электроны движутся по ферментам дыхательной цепи и теряют энергию.

3)Эта энергия используется на выкачивание протонов Н+ из матрикса в межмембранное пространство.

4) В конце дыхательной цепи электроны попадают на кислород и восстанавливают его до воды.

5) Протоны Н+ стремятся обратно в матрикс и проходят через АТФ-синтазу.

6) При этом они теряют энергию, которая используется для синтеза АТФ.

Таким образом, восстановленные формы НАД и ФАД окисляются ферментами дыхательной цепи, благодаря этому происходит присоединение фосфата к АДФ, т.е. фосфорилирование. Поэтому весь процесс целиком получил название окислительное фосфорилирование.

Всего цепь переноса электронов включает в себя около 40 разнообразных белков, которые организованы в 4 больших мембраносвязанных мульферментных комплекса. Также существует еще один комплекс, участвующий не в переносе электронов, а синтезирующий АТФ.

В дыхательной цепи есть 2 входа: 1. Протоны поступают в цепь ч/з НАДН; 2. В составе ФАДН2

Характеристика компонентов дыхательной цепи (ферментативных комплексов):

1) НАДН-дегидрогеназа (НАДН-КоQ-оксидоредуктаза) – встроена во внутреннюю мембрану митохондрий. Это флавин-зависимый фермент, в состав которого входит витамин В2. Сложный, имеет 2 простетические группы: ФМН (флавинмононуклеотид – активная форма витамина В2) и Железосерные белки (FеS-белки). Атомы Fe, входящие в FеS-центры являются негеминовыми (не входят в состав гема). Активный центр НАДНДГ обращён в сторону матрикса митохондрий. НАДНДГ дегедрирует НАДН (отщепляет Н2) и передаёт протоны и электроны сначала на ФМН, а потом ч/з FеS-центры на СоQ(восстанавливается и превращается в КоQН2 или убихинол).

Функция: а)Принимает электроны от НАДН и передает их на коэнзим Q (убихинон).

б) Переносит 4 иона Н+ на наружную поверхность внутренней митохондриальной мембраны.

2) КоQ (убихинон) – небелковый переносчик, находится в растворенном состоянии, т.к. является жирорастворимым (растворяется в липидном слое мембран). Поэтому может перемещаться как вдоль так и поперек мембраны (не заряжен). Поэтому он принимает электроны и протоны с ФАДН2, т.е. ч/з 2й вход в дыхательную цепь. Его называют коллектором электронов.

3) Цитохромы (b, c1, c, а, а3) – сложные белки (гемпротеины), небелковой частью которых является гем, содержащий Fе3+ (окисленная форма). Fе гема может обратимо принимать и отдавать электроны.

4) УбихинолДГ (КоQ-цитохром с-оксидоредуктаза) – это ферментный комплекс, состоящий из цитохромов b и с1, включающий также FеS-центры. Функция:

а) Принимает электроны от коэнзима Q и передает их на цитохром с (при этом Fе восстанавливается до 2х валентного); б)Переносит 2 иона Н+ на наружную поверхность внутренней митохондриальной мембраны.

5) Цитохром с-кислород-оксидоредуктаза - В этом комплексе находятся цитохромы а и а3, он называется также цитохромоксидаза, всего содержит 6 полипептидных цепей. В комплексе также имеется 2 иона меди. Функция: а) Принимает электроны от цитохрома с и передает их на кислород с образованием воды. б)Переносит 4 иона Н+ на наружную поверхность внутренней митохондриальной мембраны.

6) АТФ-синтаза – комплекс, состоящий из множества белковых цепей, подразделенных на две большие группы: одна группа формирует субъединицу Fо (произносится со звуком "о", а не "ноль" т.к олигомицин-чувствительная) – ее функция каналообразующая, по ней выкачанные наружу протоны водорода устремляются в матрикс. Другая группа образует субъединицу F1 – ее функция каталитическая, именно она, используя энергию протонов, синтезирует АТФ.

«Хемиоосматическая теория сопряжения, окисления и фосфорилирования» Митчел:

«Перенос электронов по дыхательной цепи от НАДН к О2 сопровождается выкачиванием протонов из матрикса митохондрий ч/з внутреннюю мембрану в межмембранное пространство. Перенос протонов осуществляется за счет свободной энергии, освобождающейся при переносе электронов по градиенту окислительно-восстановительного потенциала.»

Протоны вернуться в матрик не могут, т.к. внутренняя мембрана митохондрий непроницаема для них и для других заряженных частиц. В результате на внешней стороне внутренней мембраны сосредотачиваются «+» заряды, а на внутренней «-». На мембране возникает разность электрических потенциалов (ΔΨ, "дельта пси"). Протоны накапливаются в межмембранном пространстве, рН снижается, т.е. среда будет кислая. А в матриксе протонов меньше, возникает градиент химического потенциала (ΔрН).  ΔμH+ = ΔΨ + ΔрН (электрохимический потенциал Митчела).

Наиболее активный транспорт протонов в межмембранное пространство происходит в пунктах сопряжения, оксиления и фосфорилирования. Важную роль в процессе транспорта протонов выполняет КоQ. На каждую переносимую пару электронов по дыхательной цепи от НАДН к О2 вырабатывается 3 пары протонов. Если электроны переносятся с ФАДН2, то 2 пары протонов. Протоны могут вернутся в матрикс только по ионным каналам фермента АТФ-синтазы.

ΔμH+, генерируемый за счет протонов в каждом из пунктов сопряжения используется для синтеза 1й молекула АТФ. Синтезируемая АТФ переходит в матрикс митохондрий.

У нас самая большая информационная база в рунете, поэтому Вы всегда можете найти походите запросы

К данному материалу относятся разделы:

Первичная структура белков. Видовая специфичность белков. Наследственные изменения первичной структуры. Полиморфизм белков. Наследственные протеинопатии: серповидно-клеточная анемия, др примеры.

Конформация белковых молекул (вторичная и третичная структуры). Типы внутримолекулярных связей в белках. Роль пространственной организации пептидной цепи в образовании активных центров. Конформационные изменения при функционировании белков.

Четвертичная структура белков. Кооперативные изменения конформации протомеров. Примеры строения и функционирования олигомерных белков: гемоглобин (в сравнении с миоглобином), аллостерические ферменты.

Понятие о ферментах. Специфичность действия ферментов. Кофакторы ферментов. Зависимость скорости ферментативных реакций от концентрации субстрата, фермента, температуры и рН. Принципы количественного определения ферментов. Единицы активности.

Понятие об активном центре фермента. Механизм действия ферментов. Ингибиторы ферментов: обратимые и необратимые, конкурентные. Применение ингибиторов в качестве лекарств.

Регуляция действия ферментов: аллостерические механизмы, химическая (ковалентная) модификация. Белок-белковые взаимодействия. Примеры метаболических путей, регулируемых этими механизмами. Физиологическое значение регуляции действия ферментов.

Роль ферментов в метаболизме. Многообразие ферментов. Понятие о классификации. Наследственные первичные энзимопатии: фенилкетонурия, алкаптонурия. Другие примеры наследственных энзимопатий. Вторичные энзимопатии. Значение ферментов в медицине.

Понятие о катаболизме и анаболизме и их взаимосвязи. Эндергонические и экзергонические реакции в метаболизме. Способы передачи электронов. Особенности протекания окислительных реакций в организме. Этапы расщепления веществ и освобождения энергии (этапы ка

Оксидоредуктазы. Классификация. Характеристика подклассов. НАД-зависимые дегидрогеназы. Строение окисленной и восстановленной форм. Важнейшие субстраты НАД-зависимых дегидрогеназ. ФАД-зависимые дегидрогеназы: сукцинатдегидрогеназа и ацилКоА-дегидрог

Окислительное декарбоксилирование пирувата и цикл Кребса: последовательность реакций, связь с дыхательной цепью, регуляция, значение.

Дыхательная цепь, компоненты, структурная организация. Электрохимический потенциал, его значение.

Окислительное фосфорилирование АДФ. Механизм. Сопряжение и разобщение окисления и фосфорилирования в дыхательной цепи. Коэффициент Р/0. Регуляция дыхательной цепи.

Субстратное фосфорилирование АДФ. Отличия от окислительного фосфорилирования. Основные пути использования АТФ. Цикл АДФ-АТФ. Понятие о свободном окислении и его значение. Тканевые особенности окислительно-восстановительных процессов.

Функции углеводов. Потребность организма в углеводах. Переваривание углеводов. Нарушения переваривания и всасывания углеводов. Унификация моносахаридов. Роль печени в обмене углеводов.

Биосинтез и мобилизация гликогена: последовательность реакций, физио- логическое значение. Регуляция обмена гликогена. Гликогенозы и агликогенозы.

Анаэробный распад глюкозы: последовательность реакций, физиологическое значение. Роль анаэробного распада глюкозы в мышцах. Дальнейшая судьба молочной кислоты.

Аэробный распад глюкозы: последовательность реакций, физиологическое значение. Роль аэробного распада глюкозы в мышцах при мышечной работе. Роль аэробного распада глюкозы в мозге.

Биосинтез глюкозы (глюконеогенез): возможные предшественники, последовательность реакций. Глюкозо-лактатный цикл (цикл Кори) и глюкозо-аланиновый цикл: физиологическое значение. Значение и регуляция глюко-неогенеза из аминокислот.

Пентозофосфатный путь превращения глюкозы. Окислительный путь образования пентоз. Представление о неокислительном пути образования гексоз. Распространение, роль, регуляция.

Функции липидов. Пищевые жиры; норма суточного потребления, переваривание, всасывание продуктов переваривания. Ресинтез жиров в клетках кишечника. Хиломикроны, строение, значение, метаболизм. Пределы изменения концентрации жиров в крови.

Окисление глицерина и высших жирных к-т. Последовательность реакций. Связь β-окисления с циклом Кребса и дых цепью. Физиологическое значение окисления жирных кислот в зависимости от ритма питания и мышечной активности.

Липолиз и липогенез. Значение. Зависимость липогенеза от ритма питания и состава пищи. Регуляция липолиза и липогенеза. Транспорт и использование жирных кислот, образующихся при мобилизации жира.

Биосинтез жирных кислот: последовательность реакций, физиологическое значение, регуляция.

Пути образования и использования ацетил-КоА. Биосинтез и значение кетоновых тел. Пределы изменений концентрации кетоновых тел в крови в норме, при голодании и сахарном диабете.

Синтез холестерина, регуляция. Биологическое значение холестерина. Атеросклероз. Факторы риска для развития атеросклероза.

Транспортные липопротеиды крови: особенности строения, состава и функций разных липопротеидов. Роль в обмене жиров и холестерина. Пре¬делы изменений концентрации жиров и холестерина в крови. Патология липидного обмена.

Функции пептидов и белков. Суточная потребность в белках. Переваривание белков. Регуляция переваривания белков. Патология переваривания и всасывания белков.

Декарбоксилирование аминокислот. Его сущность. Декарбоксилирование гистидина, серина, цистеина, орнитина, лизина и глутамата. Роль биогенных аминов в регуляции метаболизма и функций.

Трансаминирование аминокислот. Специфичность аминотрансфераз. Значение реакций трансаминирования. Непрямое дезаминирование аминокислот: последовательность реакций, ферменты, биологическое значение.

Образование и пути использования аммиака. Биосинтез мочевины: последовательность реакций, регуляция. Гипераммониемия.

Обмен фенилаланина и тирозина. Наследственные нарушения обмена фенилаланина и тирозина. Значение серина, глицина и метионина.

Синтез креатина: последовательность реакций, значение креатинфосфата. Физиологическая креатинурия. Значение креатинкиназы и креатинина в диагностике.

Нуклеозиды, нуклеотиды и нуклеиновые кислоты, строение, значение. Отличия ДНК и РНК. Нуклеопротеиды. Переваривание нуклеопротеидов.

Катаболизм пуриновых и пиримидиновых оснований. Гиперурикемия. Подагра.

Биосинтез пуриновых и пиримидиновых нуклеотидов. Биосинтез дезоксирибонуклеотидов. Регуляция этих процессов.

Репликация ДНК: механизм и биологическое значение. Повреждение ДНК, репарация повреждений и ошибок репликации ДНК.

Типы РНК: особенности строения, размеры и разнообразие молекул, локализация в клетке, функции. Биосинтез РНК (транскрипция). Строение рибосом и полирибосом. Синтез аминоацил-тРНК. Субстратная специфичность аминоацил-тРНК-синтетаз.

Биологический код. Основные компоненты белоксинтезирующей системы. Биосинтез белка. Механизм. Адапторная функция тРНК и роль мРНК в этом процессе.

Регуляция биосинтеза белка. Индукция и репрессия синтеза белка на примере функционирования лактозного оперона кишечной палочки. Ингибиторы матричных биосинтезов: лекарственные препараты, вирусные и бактериальные токсины.

Гемоглобин. Строение. Синтез и распад гемоглобина. Формы билирубина. Пути выведения билирубина и других желчных пигментов. Желтухи.

Белковые фракции плазмы крови. Функции белков плазмы крови. Гипо- и гиперпротеинемия, причины этих состояний. Индивидуальные белки плазмы крови: транспортные белки, белки острой фазы.

Остаточный азот крови. Гиперазотемия, ее причины. Уремия.

Основные биохимические функции и особенности печени.

Взаимосвязь обмена жиров, углеводов и белков.

Биохимия регуляций. Основные принципы и значение. Иерархия регуляторных систем. Классификация межклеточных регуляторов. Центральная регуляция эндокринной системы: роль либеринов, статинов и тропинов.

Понятие о рецепторах. Механизм действия гормонов через внутриклеточные рецепторы и рецепторы плазматических мембран и вторые посредники (общая характеристика).

Инсулин. Строение, образование из проинсулина, метаболизм, регуляция секреции. Влияние на обмен веществ.

Сахарный диабет. Патогенез. Нарушения обмена веществ при сахарном диабете. Определение толерантности к глюкозе при диагностике сахарного диабета.

Соматотропный гормон, глюкагон и другие пептидные гормоны. Биологическое значение.

Гормоны коры надпочечников. Синтез, метаболизм, регуляция секреции. Глюкокортикостероиды, влияние на обмен веществ. Гипо- и гиперкортицизм

Строение, синтез и метаболизм йодтиронинов. Влияние на обмен веществ. Гипо- и гипертиреозы: механизм возникновения и последствия

Катехоламины. Синтез, депонирование и метаболизм катехоламинов. Механизм действия. Влияние на обмен веществ

Функции воды в организме. Регуляция обмена воды антидиуретическим гормоном

Функции минеральных веществ. Регуляция солевого обмена альдостероном и гормонами предсердий. Биохимические механизмы развития почечной гипертензии

Регуляция обмена кальция и фосфора. Роль паратгормона и тиреокальцитонина. Витамин Д. Роль 1,25-дигидроксикальциферола в регуляции кальция и фосфатов. Рахит

Витамины Е. К и убихинон, их участие в обмене веществ

Причастия и отглагольные прилагательные

Буквы Н и НН в отглагольных прилагательных и причастиях. Признаки, по которым можно определить часть речи (отглагольное прилагательное или причастие). Различие причастия и прилагательное.

Структура тренировки. Тренировочный процесс

Процесс многолетней подготовки спортсменов. Применение лечебной физической культуры. Адаптивная физическая культура и спорт инвалидов. Общие основы лечебной физической культуры.

Окружающая среда. Действие на организм. Ответы на тестовые вопросы

Экзема. Этиология. Классификация

Экземой называют заболевание поверхностных слоев кожи, сопровождающееся полиморфизмом высыпей. Этиология. Причины возникновения экземы могут быть наружными и внутренними.

Характеристика мереженого обладнання

Дипломна робота. До теперішнього часу системні адміністратори були обмежені у виборі засобів для побудови центральних магістралей своїх мереж. З появою нових технологій і устаткування виникла інша проблема – що вибрати?

Рассмотрим более подробно механизм возникновения гальвани- потенциалов на примере водородного электрода. Водородный электрод относится к электродам первого рода. Водородный электрод представляет собой платинированную платину, погруженную в раствор кислоты, например НС1, и обдуваемую потоком газообразного водорода. На электроде происходит реакция

где H+ q обозначает сольватированный протон в водном растворе (т.е. ион гидроксония Н э О +), a e(Pt) - электрон, оставшийся в платине. На таком электроде молекула водорода диссоциирует с образованием иона гидроксония в растворе и электрона проводимости в платине. При этом металлическая платина заряжается отрицательно, а раствор - положительно. Как следствие, возникает разность электрических потенциалов между платиной и раствором. Возникает двойной слой, состоящий из отрицательных и положительных зарядов, напоминающий плоский электрический конденсатор. Водородный электрод обратим по отношению к катиону.

При рассмотрении равновесия для приведенной реакции диссоциации необходимо учесть, что образовавшийся катион Н + , покидая платину, совершает работу против электрических сил. Эта работа совершается за счет термической энергии раствора. Она равна запасаемой электрической энергии. Поэтому химический потенциал акватированных протонов, р(Н ^ q) не будет равен простой сумме p°(Hgq) + R71ntf(Hg q), так как раствор имеет отличный от платины электрический потенциал. Учитывая работу против сил электрического поля в процессе переноса протона, для р(Н* а) получим

где cp(Pt) - электрический потенциал платинового электрода; (р) - электрический потенциал раствора; й(НМ - активность катионов водорода в растворе; F- число Фарадея (F= 96485 Кл/моль); величина ср(р) - ф(Р0 представляет собой гальвани-потенциал на границе платина - раствор Д^ф. Число Фарадея возникло потому, что химические потенциалы рассчитывают обычно на один моль, а не на один электрон. Работа против сил электрического поля Р[ф(/>) - - ф(Р0] совершается за счет термической энергии раствора. Именно эта работа и обеспечивает зарядку электродов, разрядка которых при замыкании внешней цепи сопровождается производством электрической энергии.

Величину типа р(Н + q) называют электрохимическим потенциалом. Приравнивая в равновесии химические потенциалы для веществ в левой и правой частях реакции (16.1), получаем

где p}

Статьи по теме: