Внутренняя энергия термодинамический потенциал. Термодинамические потенциалы

План лекции : Термодинамический потенциал. Изохорно-изотермический потенциал или свободная энергия Гельмгольца. Применение энергии Гельмгольца в качестве критерия направления самопроизвольного процесса и равновесия в закрытых системах. Изобарно-изотермический потенциал или свободная энергия Гиббса. Применение энергии Гиббса в качестве критерия направления самопроизвольного процесса и равновесия в закрытых системах. Характеристические функции: внутренняя энергия, энтальпия, свободная энергия Гельмгольца, свободная энергия Гиббса. Уравнения Гиббса-Гельмгольца. Химический потенциал.

Термодинамический потенциал – это функция состояния системы, убыль которой в процессе, протекающем при постоянстве двух параметров, равна максимальной полезной работе.

Энергия Гельмгольца как изохорно-изотермический потенциал.

Для изохорно-изотермических условий V = const, T = const . Вспомним, что объединенное уравнение, выражающее первый и второй законы термодинамики, имеет следующий вид: .

Так как при V = const , = 0, получим . (6.1) Проинтегрируем данное уравнение:

Введем обозначение F это энергия Гельмгольца. F = U - TS (6.2)

Тогда F 2 = U 2 - TS 2 и F 1 = U 1 - TS 1 .

То есть энергия Гельмгольца – это термодинамический потенциал, так как его изменение равно полезной работе при протекании обратимого процесса в системе. Для необратимого процесса: В общем случае для обратимого и необратимого процессов справедливо выражение

Энергия Гельмгольца равна , отсюда U = F+TS . (6.4)

То есть F – это та часть внутренней энергии, которая может быть превращена в работу, поэтому она называется свободной энергией ; произведение TS – это энергия, которая выделяется в виде тепла, поэтому она называется связанной энергией .

Энергия Гельмгольца как критерий возможности протекания процесса. Дифференцируя выражение получим dF = dU – TdS - SdT . Подставляя вместо произведения TdS его выражение из «объединенного» уравнения TdS ≥ dU+pdV получим

dF ≤ - SdT - pdV . (6.5)

Так как SdT = 0 и pdV= 0 (при Т = cons t и V= const ), тогда для изохорно-изотермических условий

(dF) v , T ≤ 0. (6.6)

В закрытых (замкнутых) системах при изохорно-ихотермических условиях:

· если dF < 0 , то процесс протекает самопроизвольно;

· если dF > 0 , то процесс не протекает;

· если dF = 0 , то система находится в состоянии равновесия.

Энергия Гиббса как изобарно-изотермичесий потенциал. Для изобарно-изотермических условий р = const , T = const. Преобразуем объединенное уравнение первого и второго законов термодинамики:

Проинтегрируем это выражение:


Введем обозначение - это энергия Гиббса. (6.8)

То есть энергия Гиббса G – это термодинамический потенциал, так как его изменение равно полезной работе при протекании обратимого процесса в системе. Для необратимого процесса В случае для обратимого и необратимого процесса справедливо выражение

Термодинамическими потенциалами, или характеристическими функциями, называют термодинамические функции, которые содержат в себе всю термодинамическую информацию о системе. Наибольшее значение имеют четыре основных термодинамических потенциала:

1) внутренняя энергия U (S ,V ),

2) энтальпия H (S ,p ) = U + pV ,

3) энергия Гельмгольца F (T ,V ) = U - TS ,

4) энергия Гиббса G (T ,p ) = H - TS = F + pV .

В скобках указаны термодинамические параметры, которые получили название естественных переменных для термодинамических потенциалов. Все эти потенциалы имеют размерность энергии и все они не имеют абсолютного значения, поскольку определены с точностью до постоянной, которая равна внутренней энергии при абсолютном нуле.

Зависимость термодинамических потенциалов от их естественных переменных описывается основным уравнением термодинамики , которое объединяет первое и второе начала. Это уравнение можно записать в четырех эквивалентных формах:

dU = TdS - pdV (5.1)

dH = TdS + Vdp (5.2)

dF = - pdV - SdT (5.3)

dG = Vdp - SdT (5.4)

Эти уравнения записаны в упрощенном виде - только для закрытых систем, в которых совершается только механическая работа.

Зная любой из четырех потенциалов как функцию естественных переменных, можно с помощью основного уравнения термодинамики найти все другие термодинамические функции и параметры системы (см. пример 5-1).

Другой важный смысл термодинамических потенциалов состоит в том, что они позволяют предсказывать направление термодинамических процессов. Так, например, если процесс происходит при постоянных температуре и давлении, то неравенство, выражающее второй закон термодинамики:

эквивалентно неравенству dG p,T 0 (мы учли, что при постоянном давлении Q p = dH ), где знак равенства относится к обратимым процессам, а неравенства - к необратимым. Таким образом, при необратимых процессах, протекающих при постоянных температуре и давлении, энергия Гиббса всегда уменьшается. Минимум энергии Гиббса достигается при равновесии.

Аналогично, любой термодинамический потенциал в необратимых процессах при постоянстве естественных переменных уменьшается и достигает минимума при равновесии:

Потенциал

Естественные
переменные

Условие само-произвольности

Условия
равновесия

S = const, V = const

dU = 0, d 2 U > 0

S = const, p = const

dH = 0, d 2 H > 0

T = const, V = const

dF = 0, d 2 F > 0

T = const, p = const

dG = 0, d 2 G > 0

Наибольшее значение в конкретных термодинамических расчетах имеют два последние потенциала - энергия Гельмгольца F и энергия Гиббса G , т.к. их естественные переменные наиболее удобны для химии. Другое (устаревшее) название этих функций - изохорно-изотермический и изобарно-изотермический потенциалы. Они имеют дополнительный физико-химический смысл. Уменьшение энергии Гельмгольца в каком-либо процессе при T = const, V = const равно максимальной механической работе, которую может совершить система в этом процессе:

F 1 - F 2 = A max (= A обр).

Таким образом, энергия F равна той части внутренней энергии (U = F + TS ), которая может превратиться в работу.

Аналогично, уменьшение энергии Гиббса в каком-либо процессе при T = const, p = const равно максимальной полезной (т.е., немеханической) работе, которую может совершить система в этом процессе:

G 1 - G 2 = A пол.

Зависимость энергии Гельмгольца (Гиббса) от объема (давления) вытекает из основного уравнения термодинамики (5.3), (5.4):

. (5.5)

Зависимость этих функций от температуры можно описать с помощью основного уравнения термодинамики:

(5.6)

или с помощью уравнения Гиббса-Гельмгольца:

(5.7)

Расчет изменения функций F и G в химических реакциях можно проводить разными способами. Рассмотрим два из них на примере энергии Гиббса.

1) По определению, G = H - TS . Если продукты реакции и исходные вещества находятся при одинаковой температуре, то стандартное изменение энергии Гиббса в химической реакции равно:

2) Аналогично тепловому эффекту реакции, изменение энергии Гиббса можно рассчитать, используя энергии Гиббса образования веществ:

В термодинамических таблицах обычно приводят абсолютные энтропии и значения термодинамических функций образования соединений из простых веществ при температуре 298 К и давлении 1 бар (стандартное состояние). Для расчета r G и r F при других условиях используют соотношения (5.5) - (5.7).

Все термодинамические потенциалы являются функциями состояния. Это свойство позволяет найти некоторые полезные соотношения между частными производными, которые называют соотношениями Максвелла .

Рассмотрим выражение (5.1) для внутренней энергии. Т.к. dU - полный дифференциал, частные производные внутренней энергии по естественным переменным равны:

Если продифференцировать первое тождество по объему, а второе - по энтропии, то получатся перекрестные вторые частные производные внутренней энергии, которые равны друг другу:

(5.10)

Три другие соотношения получаются при перекрестном дифференцировании уравнений (5.2) - (5.4).

(5.11)

(5.12)

(5.13)

ПРИМЕРЫ

Пример 5-1. Внутренняя энергия некоторой системы известна как функция энтропии и объема, U (S ,V ). Найдите температуру и теплоемкость этой системы.

Решение . Из основного уравнения термодинамики (5.1) следует, что температура - это частная производная внутренней энергии по энтропии:

Изохорная теплоемкость определяет скорость изменения энтропии с температурой:

Воспользовавшись свойствами частных производных, можно выразить производную энтропии по температуре через вторую производную внутренней энергии:

.

Пример 5-2. Используя основное уравнение термодинамики, найдите зависимость энтальпии от давления при постоянной температуре: а) для произвольной системы; б) для идеального газа.

Решение . а) Если основное уравнение в форме (5.2) поделить на dp при постоянной температуре, получим:

.

Производную энтропии по давлению можно выразить с помощью соотношения Максвелла для энергии Гиббса (5.13):

.

б) Для идеального газа V (T ) = nRT / p . Подставляя эту функцию в последнее тождество, получим:

.

Энтальпия идеального газа не зависит от давления.

Пример 5-3. Выразите производные и через другие термодинамические параметры.

Решение . Основное уравнение термодинамики (5.1) можно переписать в виде:

,

представив энтропию как функцию внутренней энергии и объема. Коэффициенты при dU и dV равны соответствующим частным производным:

.

Пример 5-4. Два моля гелия (идеальный газ, мольная теплоемкость C p = 5/2 R ) нагревают от 100 о С до 200 о С при p = 1 атм. Вычислите изменение энергии Гиббса в этом процессе, если известно значение энтропии гелия, = 131.7 Дж/(моль. К). Можно ли считать этот процесс самопроизвольным?

Решение . Изменение энергии Гиббса при нагревании от 373 до 473 К можно найти, проинтегрировав частную производную по температуре (5.6):

.

Зависимость энтропии от температуры при постоянном давлении определяется изобарной темлоемкостью:

Интегрирование этого выражения от 373 К до T дает:

Подставляя это выражение в интеграл от энтропии, находим:

Процесс нагревания не обязан быть самопроизвольным, т.к. уменьшение энергии Гиббса служит критерием самопроизвольного протекания процесса только при T = const и p = const.

Ответ. G = -26850 Дж.

Пример 5-5. Рассчитайте изменение энергии Гиббса в реакции

CO + ЅO 2 = CO 2

при температуре 500 K и парциальных давлениях 3 бар. Будет ли эта реакция самопроизвольной при данных условиях? Газы считать идеальными. Необходимые данные возьмите из справочника.

Решение . Термодинамические данные при температуре 298 К и стандартном давлении 1 бар сведем в таблицу:

Вещество

Энтальпия образования
, кДж/моль

Энтропия
, Дж/(моль. К)

Теплоемкость
, Дж/(моль. К)

КДж/моль

Дж/(моль. К)

Дж/(моль. К)

CO + ЅO 2 =
= CO 2

Примем, что C p = const. Изменения термодинамических функций в результате реакции рассчитаны как разность функций реагентов и продуктов:

f = f (CO 2) - f (CO) - Ѕ f (O 2).

Стандартный тепловой эффект реакции при 500 К можно рассчитать по уравнению Кирхгофа в интегральной форме (3.8):

Стандартное изменение энтропии в реакции при 500 К можно рассчитать по формуле (4.9):

Стандартное изменение энергии Гиббса при 500 К:

Для расчета изменения энергии Гиббса при парциальных давлениях 3 атм необходимо проинтегрировать формулу (5.5) и использовать условие идеальности газов (V = n RT / p , n - изменение числа молей газов в реакции):

Эта реакция может протекать самопроизвольно при данных условиях.

Ответ . G = -242.5 кДж/моль.

ЗАДАЧИ

5-1. Выразите внутреннюю энергию как функцию переменных G , T , p .

5-2. Используя основное уравнение термодинамики, найдите зависимость внутренней энергии от объема при постоянной температуре: а) для произвольной системы; б) для идеального газа.

5-3. Известно, что внутренняя энергия некоторого вещества не зависит от его объема. Как зависит давление вещества от температуры? Ответ обоснуйте.

5-4. Выразите производные и через другие термодинамические параметры и функции.

5-5. Напишите выражение для бесконечно малого изменения энтропии как функции внутренней энергии и объема. Найдите частные производные энтропии по этим переменным и составьте соответствующее уравнение Максвелла.

5-6. Для некоторого вещества известно уравнение состояния p (V , T ). Как изменяется теплоемкость C v с изменением объема? Решите задачу: а) в общем виде; б) для какого-либо конкретного уравнения состояния (кроме идеального газа).

5-7. Докажите тождество: .

5-8. Энергия Гельмгольца одного моля некоторого вещества записывается следующим образом:

F = a + T (b - c - b ln T - d ln V ),

где a , b , c , d - константы. Найдите давление, энтропию и теплоемкость C V этого тела. Дайте физическую интерпретацию константам a , b , d .

5-9. Нарисуйте график зависимости энергии Гиббса индивидуального вещества от температуры в интервале от 0 до T > T кип.

5-10. Для некоторой системы известна энергия Гиббса:

G(T ,p ) = aT (1-lnT ) + RT lnp - TS 0 + U 0 ,

где a , R , S 0 , U 0 - постоянные. Найдите уравнение состояния p (V ,T ) и зависимость U (V ,T ) для этой системы.

5-11. Зависимость мольной энергии Гельмгольца некоторой системы от температуры и объема имеет вид:

где a , b , c , d - константы. Выведите уравнение состояния p (V ,T ) для этой системы. Найдите зависимость внутренней энергии от объема и температуры U (V ,T ). Каков физический смысл постоянных a , b , c ?

5-12. Найдите зависимость мольной внутренней энергии от объема для термодинамической системы, которая описывается уравнением состояния (для одного моля)

,

где B (T ) - известная функция температуры.

5-13. Для некоторого вещества зависимость теплоемкости от температуры имеет вид: C V = aT 3 при температуре 0 - 10 К. Найдите зависимость энергии Гельмгольца, энтропии и внутренней энергии от температуры в этом диапазоне.

5-14. Для некоторого вещества зависимость внутренней энергии от температуры имеет вид: U = aT 4 + U 0 при температуре 0 - 10 К. Найдите зависимость энергии Гельмгольца, энтропии и теплоемкости C V от температуры в этом диапазоне.

5-15. Выведите соотношение между теплоемкостями:

.

5-16. Исходя из тождества , докажите тождество:

.

5-17. Один моль газа Ван-дер-Ваальса изотермически расширяется от объема V 1 до объема V 2 при температуре T . Найдите U , H , S , F и G для этого процесса.

Термодинами́ческие потенциа́лы (термодинамические функции ) - характеристические функции в термодинамике , убыль которых в равновесных процессах, протекающих при постоянстве значений соответствующих независимых параметров, равна полезной внешней работе.

Поскольку в изотермическом процессе количество теплоты, полученное системой, равно , то убыль свободной энергии в квазистатическом изотермическом процессе равна работе, совершённой системой над внешними телами.

Потенциал Гиббса

Также называемый энергией Гиббса , термодинамическим потенциалом , свободной энергией Гиббса и даже просто свободной энергией (что может привести к смешиванию потенциала Гиббса со свободной энергией Гельмгольца):

.

Термодинамические потенциалы и максимальная работа

Внутренняя энергия представляет собой полную энергию системы. Однако второе начало термодинамики запрещает превратить всю внутреннюю энергию в работу.

Можно показать, что максимальная полная работа (как над средой, так и над внешними телами), которая может быть получена от системы в изотермическом процессе , равна убыли свободной энергии Гельмгольца в этом процессе:

,

где - свободная энергия Гельмгольца.

В этом смысле представляет собой свободную энергию, допускающую преобразование в работу. Оставшаяся часть внутренней энергии может быть названа связанной .

В некоторых приложениях приходится различать полную и полезную работу. Последняя представляет собой работу системы над внешними телами, исключая среду, в которую она погружена. Максимальная полезная работа системы равна

где - энергия Гиббса.

В этом смысле энергия Гиббса также является свободной .

Каноническое уравнение состояния

Задание термодинамического потенциала некоторой системы в определенной форме эквивалентно заданию уравнения состояния этой системы.

Соответствующие дифференциалы термодинамических потенциалов:

  • для внутренней энергии
,
  • для энтальпии
,
  • для свободной энергии Гельмгольца
,
  • для потенциала Гиббса
.

Эти выражения математически можно рассматривать как полные дифференциалы функций двух соответствующих независимых переменных. Поэтому естественно рассматривать термодинамические потенциалы как функции:

, , , .

Задание любой из этих четырёх зависимостей - то есть конкретизация вида функций , , , - позволяет получить всю информацию о свойствах системы. Так, например, если нам задана внутренняя энергия как функция энтропии и объёма , оставшиеся параметры могут быть получены дифференцированием:

Здесь индексы и означают постоянство второй переменной, от которой зависит функция. Эти равенства становятся очевидными, если учесть, что .

Задание одного из термодинамических потенциалов как функции соответствующих переменных, как записано выше, представляет собой каноническое уравнение состояния системы. Как и другие уравнения состояния, оно справедливо лишь для состояний термодинамического равновесия . В неравновесных состояниях эти зависимости могут не выполняться.

Метод термодинамических потенциалов. Соотношения Максвелла

Метод термодинамических потенциалов помогает преобразовывать выражения, в которые входят основные термодинамические переменные и тем самым выражать такие «труднонаблюдаемые» величины, как количество теплоты, энтропию, внутреннюю энергию через измеряемые величины - температуру, давление и объём и их производные.

Рассмотрим опять выражение для полного дифференциала внутренней энергии:

.

Известно, что если смешанные производные существуют и непрерывны, то они не зависят от порядка дифференцирования, то есть

.

Но и , поэтому

.

Рассматривая выражения для других дифференциалов, получаем:

, , .

Эти соотношения называются соотношениями Максвелла . Заметим, что они не выполняются в случае разрывности смешанных производных, что имеет место при фазовых переходах 1-го и 2-го рода.

Системы с переменным числом частиц. Большой термодинамический потенциал

Химический потенциал () компонента определяется как энергия, которую необходимо затратить для того, чтобы добавить в систему бесконечно малое молярное количество этого компонента. Тогда выражения для дифференциалов термодинамических потенциалов могут быть записаны так:

, , , .

Поскольку термодинамические потенциалы должны быть аддитивными функциями числа частиц в системе, канонические уравнения состояния принимают такой вид (с учётом того, что S и V - аддитивные величины, а T и P - нет):

, , , .

И, поскольку , из последнего выражения следует, что

,

то есть химический потенциал - это удельный потенциал Гиббса (на одну частицу).

Для большого канонического ансамбля (то есть для статистического ансамбля состояний системы с переменным числом частиц и равновесным химическим потенциалом) может быть определён большой термодинамический потенциал , связывающий свободную энергию с химическим потенциалом:

;

Нетрудно проверить, что так называемая связанная энергия является термодинамическим потенциалом для системы, заданной с постоянными .

Метод термодинамических потенциалов или метод характеристических функций был развит Гиббсом. Это аналитический метод, базирующейся на использовании основного уравнения термодинамики для квазистатических процессов .

Идея метода состоит в том, что основное уравнение термодинамики позволяет для системы в различных условиях ввести некоторые функции состояния, называемые термодинамическими потенциалами, изменение которых при изменении состояния является полным дифференциалом; пользуясь этим можно составить уравнения, необходимые для анализа того или иного явления.

Рассмотрим простые системы. В этом случае для квазистатических процессов основное уравнение ТД имеет вид для закрытой системы.

Как изменится это уравнение, если будет меняться число частиц? Внутренняя энергия и энтропия пропорциональны числу частиц в системе: ~, ~, следовательно ~, ~и уравнение будет иметь вид для открытой системы, где
- химический потенциал будет обобщенной силой для независимой переменной числа частиц в системе.

Это уравнение связывает пять величин, две из которых являются функциями состояния: . Само же состояние простой системы определяется двумя параметрами. Поэтому, выбирая из пяти названных величин две в качестве независимых переменных, мы получаем, что основное уравнение содержит еще три неизвестные функции. Для их определения необходимо к основному уравнению добавить еще два уравнения, которыми могут быть термическое и калорическое уравнения состояния: , , если в качестве независимых параметров выбраны .

Однако определение этих трех неизвестных величин упрощается с введением термодинамических потенциалов.

Выразим из основного уравнения : для закрытой системы
или для открытой системы

Мы видим, что приращение внутренней энергии полностью определяется приращением энтропии и приращением объема, т.о. если мы в качестве независимых переменных выберем или для открытой системы, то для определения других трех переменных нам нужно знать лишь одно уравнение для внутренней энергии как функции или как функции .

Так, зная зависимость , можно с помощью основного ТД тождества простым дифференцированием (взяв первые производные) определить обе другие термические переменные:

Если взять вторые производные от , то можно определить калорические свойства системы: и - адиабатический модуль упругости системы (определяет изменение давления \ упругости \ на единицу изменения объема и представляет собой обратную величину коэффициента сжимаемости):

Учитывая, что - полный дифференциал, и приравнивая смешанные производные , находим соотношение между двумя свойствами системы – изменение температуры при ее адиабатическом расширении и изменение давления при изохорическом сообщении теплоты системе:



Таким образом, внутренняя энергия как функция переменных , является характеристической функцией. Ее первые производные определяют термические свойства системы, вторые – калорические свойства системы, смешанные - соотношения между другими свойствами системы. Установление таких связей и составляет содержание метода ТД потенциалов. А является одним из множества ТД потенциалов.

Мы можем найти выражение для ТД потенциалов, его явный, только для 2-х систем, одной из которых является идеальный газ, другой равновесное излучение, т.к. для них известны и уравнения состояния и внутренняя энергия как функция параметров. Для всех других систем ТД потенциалы находятся или из опыта, или методами статистической физики, и потом с помощью полученных ТД соотношений определяют уравнения состояния и другие свойства. Для газов ТД функции чаще всего вычисляются методами статистической физики, для жидкостей и твердых тел они обычно находятся экспериментально с помощью калорических определений теплоемкости.

Получим выражение для внутренней энергии идеального газа, как ТД потенциала, т.е. как функции :

Для идеального газа , внутренняя энергия зависит только от ,
с другой стороны энтропия идеального газа зависит от : . Выразим из второго уравнения и подставим в первое уравнение:

Прологарифмируем

Учтем, что

Преобразуя второй множитель, получим:

Подставим полученное выражение в первое уравнение и получим ТД потенциал внутренняя энергия: .

Внутренняя энергия в качестве ТД потенциала с практической точки зрения неудобна тем, что одна из ее независимых переменных энтропия непосредственно, подобно величинам , не может быть измерена.

Рассмотрим другие ТД потенциалы, преобразуем основное термодинамическое тождество, так чтобы в него входили дифференциалы и .

Мы видим, что ТД функция энтальпия является ТД потенциалом при независимых переменных , поскольку производные от этой функции даю остальные характеристики системы.

Калорические и адиабатический модуль упругости ;

дают вторые производные.

Связь двух свойств системы, а именно, адиабатического изменения температуры при изменении давления и изобарического изменения объема при сообщении системе теплоты получим, рассчитав смешанные производные:

Рассмотрим ТД потенциал, в независимых переменных, удобных для измерения. Преобразуем основное ТД тождество, так чтобы в него входили дифференциалы и .

Мы видим, что ТД функция свободная энергия или функция Гельмгольца является ТД потенциалом при независимых переменных , поскольку производные от этой функции даю остальные характеристики системы.

Термические , дают первые производные.

Калорические теплоемкость и коэффициент сжимаемости - вторые производные:

Отсюда следует ;

Отсюда следует .

Смешанные производные устанавливают связь между двумя свойствами системы – изменением энтропии при ее изотермическом расширении и изменением давления при изохорическом нагревании:

Рассмотрим еще одну функцию, с другим набором переменных, удобных для измерения. Преобразуем основное ТД тождество, так чтобы в него входили дифференциалы и .

ТД функция называется потенциалом Гиббса, свободная энергия Гиббса является ТД потенциалом при независимых переменных , поскольку производные от этой функции даю остальные характеристики системы.

Термические , , позволяющие зная явный вид функции найти термическое уравнение состояния системы.

Калорические теплоемкость и коэффициент сжимаемости :

Отсюда следует ;

Отсюда следует .

Смешанные производные устанавливают связь между двумя свойствами системы –

изменением энтропии при ее изотермическом изменении давления и изменением объема при изобарическом нагревании:

Как видим, в общем случае, термодинамические потенциалы есть функции трех переменных для открытых однокомпонентных систем и функциями всего двух переменных для закрытых систем . Каждый ТД потенциал содержит в себе полностью все характеристики системы. и; из и выражения получим для .

Метод ТД потенциалов и метод циклов – два метода применяемых в ТД для исследования физических явлений.

Лекция 14.

Основное неравенство и основное уравнение термодинамики. Понятие о термодинамических потенциалах. Эффект Джоуля-Томпсона. Принцип Ле-Шателье-Брауна. Введение в термодинамику необратимых процессов.

Основное неравенство и основное уравнение термодинамики

Для энтропии выполняется соотношение . Используя первое начало термодинамики, получаем основное неравенство термодинамики:

.

Знак равенства соответствует равновесным процессам . Основное уравнение равновесных (обратимых) процессов:

.

Метод термодинамических потенциалов.

Применение законов термодинамики даёт возможность описывать многие свойства макросистем. Для такого описания исторически сложились два пути: метод циклов и метод термодинамических функций. Первый основан на анализе обратимых циклов, а второй – на применении термодинамических функций (потенциалов), введённых Гиббсом.

Исходным для вывода всех термодинамических потенциалов является основное уравнение термодинамики:

,

связывающее между собой пять величин (T , S , U , p , V ), которые могут быть параметрами состояния или рассматриваться как функции состояния системы.

Для определения состояния простейшей термодинамической системы достаточно задать значения двух независимых параметров. Поэтому для нахождения значений остальных трех параметров необходимо определить ещё три уравнения, одним из которых является основное уравнение термодинамики, а остальные два могут быть, например, уравнением состояния и дополнительным уравнением, вытекающим из свойств конкретного состояния системы:

;
;
.

В общем случае к термодинамическим потенциалам может относиться любая функция состояния (например, внутренняя энергия или энтропия), если она определена как независимая функция параметров состояния. Поэтому число термодинамических функций очень велико. Обычно рассматривают те, которые обладают следующим свойством: частные производные функции по соответствующим параметрам равны тому или иному параметру состояния системы.

Термодинамические потенциалы ( термодинамические функции ) это определённые функции объёма, давления, температуры, энтропии, числа частиц системы и других макроскопических параметров, характеризующих состояние системы, обладающие следующим свойством: если известен термодинамический потенциал, то путём его дифференцирования по отмеченным выше параметрам можно получить все другие параметры, определяющие состояние системы.

Примеры термодинамических потенциалов.

1) V и энтропию S . Тогда из основного уравнения термодинамики вытекает:
. Откуда находим
,
. Следовательно, внутренняя энергия
- потенциал.

Смысл внутренней энергии как потенциала : при V=const получаем:
, т.е. изменение внутренней энергии равно количеству теплоты, подведённой к системе при изохорном процессе.

Если процесс необратимый, то
или
.

2) Выберем в качестве независимых параметров давление p и энтропию S .

С учетом равенства
и основного уравнения термодинамики:
, получаем, что из соотношения: следует:
. А теперь введём обозначение:
. Тогда
и
,
. Значит, функция
является термодинамическим потенциалом и носит название: энтальпия.

Смысл энтальпии как термодинамического потенциала : при p =const получаем, что
, т.е. изменение энтальпии равно подведённому количеству теплоты при изобарном процессе.

Если процесс необратимый, то
или ,
.

3) Выберем в качестве независимых параметров объём V и температуру T .

Перепишем основное уравнение термодинамики
в виде:
и с учётом равенства
получаем: или . Теперь вводим обозначение:
, тогда
,
,
. Таким образом, функция
- термодинамический потенциал, который называется свободной энергией или термодинамическим потенциалом Гельмгольца.

Смысл свободной энергии как термодинамического потенциала : при T=const получаем: , т.е. уменьшение свободной энергии равно работе, совершённой системой в изотермическом процессе.

Если процесс необратимый, то
или , т.е.

.

При необратимом изотермическом и изохорном процессе
- свободная энергия уменьшается до тех пор, пока система не придет в термодинамическое равновесие – в этом случае свободная энергия принимает минимальное значение.

Статьи по теме: