Теплотехнический расчет полов, расположенных на грунте. Расчетные теплопотери помещения по снип Сопротивление пола по зонам

Для выполняения расчета теплопотерь через пол и потолок на потребуются следующие данные:

  • размеры дома 6 х 6 метров.
  • Полы - доска обрезная, шпунтованная толщиной 32 мм, обшиты ДСП толщиной 0,01 м, утеплены минераловатным утеплителем толщиной 0,05 м. Под домом устроено подполье для хранения овощей и консервации. Зимой температура в подполье в среднем составляет +8°С.
  • Потолочное перекрытие - потолки сделаны из деревянных щитов, потолки утеплены со стороны чердачного помещения минераловатным утеплителем толщина слоя 0,15 метра, с устройством паро-гидроизоляционного слоя. Чердачное помещение неутепленное.

Расчет теплопотерь через пол

R досок =B/K=0,032 м/0,15 Вт/мК =0,21 м²х°С/Вт, где B - толщина материала, К - коэффициент теплопороводности.

R дсп =B/K=0,01м/0,15Вт/мК=0,07м²х°С/Вт

R утепл =B/K=0,05 м/0,039 Вт/мК=1,28 м²х°С/Вт

Суммарное значение R пола =0,21+0,07+1,28=1,56 м²х°С/Вт

Учитывая, что в подполье температура зимой постоянно держится около +8°С, то dT необходимое для расчета теплопотерь равно 22-8 =14 градусов. Теперь есть все данные для расчета теплопотерь через пол:

Q пола = SхdT/R=36 м²х14 градусов/1,56 м²х°С/Вт=323,07 Вт.ч (0,32 кВт.ч)

Расчет теплопотерь через потолок

Площадь потолка такая же как и пола S потолка = 36 м 2

При расчете теплового сопротивления потолка мы не учитываем деревянные щиты, т.к. они не имеют плотного соединения между собой и не выполняют роль теплоизолятора. Поэтому тепловое сопротивление потолка:

R потолка = R утеплителя = толщина утеплителя 0,15 м/теплопроводность утеплителя 0,039 Вт/мК=3,84 м²х°С/Вт

Производим расчет теплопотерь через потолок:

Q потолка =SхdT/R=36 м²х52 градуса/3,84 м²х°С/Вт=487,5 Вт.ч (0,49 кВт.ч)

Согласно СНиП 41-01-2003 полы этажа здания, расположенные на грунте и лагах, разграничиваются на четыре зоны-полосы шириной 2 м параллельно наружным стенам (рис. 2.1). При подсчёте потерь тепла через полы, расположенные на грунте или лагах, поверхность участков полов возле угла наружных стен (в I зоне-полосе ) вводится в расчёт дважды (квадрат 2х2 м).

Сопротивление теплопередаче следует определять:

а) для неутеплённых полов на грунте и стен, расположенных ниже уровня земли, с теплопроводностью l ³ 1,2 Вт/(м×°С) по зонам шириной 2 м, параллельным наружным стенам, принимая R н.п. , (м 2 ×°С)/Вт, равным:

2,1 – для I зоны;

4,3 – для II зоны;

8,6 – для III зоны;

14,2 – для IV зоны (для оставшейся площади пола);

б) для утеплённых полов на грунте и стен, расположенных ниже уровня земли, с теплопроводностью l у.с. < 1,2 Вт/(м×°С) утепляющего слоя толщиной d у.с. , м, принимая R у.п. , (м 2 ×°С)/Вт, по формуле

в) термическое сопротивление теплопередаче отдельных зон полов на лагах R л, (м 2 ×°С)/Вт, определяют по формулам:

I зона – ;

II зона – ;

III зона – ;

IV зона – ,

где , , , – значения термического сопротивления теплопередаче отдельных зон неутеплённых полов, (м 2 ×°С)/Вт, соответственно численно равные 2,1; 4,3; 8,6; 14,2; – сумма значений термического сопротивления теплопередаче утепляющего слоя полов на лагах, (м 2 ×°С)/Вт.

Величину вычисляют по выражению:

, (2.4)

здесь – термическое сопротивление замкнутых воздушных прослоек
(табл. 2.1); δ д – толщина слоя из досок, м; λ д – теплопроводность материала из дерева, Вт/(м·°С).

Потери тепла через пол, расположенный на грунте, Вт:

, (2.5)

где , , , – площади соответственно I,II,III,IV зон-полос, м 2 .

Потери тепла через пол, расположенный на лагах, Вт:

, (2.6)

Пример 2.2.

Исходные данные:

– этаж первый;

– наружных стен – две;

– конструкция полов: полы бетонные, покрытые линолеумом;


– расчётная температура внутреннего воздуха °С;

Порядок расчёта.



Рис. 2.2. Фрагмент плана и расположение зон полов в жилой комнате №1
(к примерам 2.2 и 2.3)

2. В жилой комнате № 1 размещаются только I-ая и часть II-ой зоны.

I-ая зона: 2,0´5,0 м и 2,0´3,0 м;

II-ая зона: 1,0´3,0 м.

3. Площади каждой зоны равны:

4. Определяем сопротивление теплопередаче каждой зоны по формуле (2.2):

(м 2 ×°С)/Вт,

(м 2 ×°С)/Вт.

5. По формуле (2.5) определяем потери тепла через пол, расположенный на грунте:

Пример 2.3.

Исходные данные:

– конструкция пола: полы деревянные на лагах;

– наружных стен – две (рис. 2.2);

– этаж первый;

– район строительства – г. Липецк;

– расчётная температура внутреннего воздуха °С; °С.

Порядок расчёта.

1. Вычерчиваем план первого этажа в масштабе с указанием основных размеров и делим пол на четыре зоны-полосы шириной 2 м параллельно наружным стенам.

2. В жилой комнате №1 размещаются только I-ая и часть II-ой зоны.

Определяем размеры каждой зоны-полосы:

Приведенное термическое сопротивление теплопередаче конструкции пола, расположенного непосредственно на грунте, принимается по упрощенной методике, в соответствии с которой поверхность пола делят на четыре полосы шириной 2 м, параллельные наружным стенам.

1. Для первой зоны = 2,1.

,

2. Для второй зоны = 4,3.

Коэффициент теплопередачи равен:

,

3. Для третьей зоны = 8,6.

Коэффициент теплопередачи равен:

,

4. Для четвёртой зоны = 14,2.

Коэффициент теплопередачи равен:

.

Теплотехнический расчёт наружных дверей.

1. Определяем требуемое сопротивление теплопередаче для стены:

где: n – поправочный коэффициент на расчётную разность температур

t в – расчётная температура внутреннего воздуха

t н Б – расчётная температура наружного воздуха

Δt н – нормируемый температурный перепад между температурой внутреннего воздуха и температурой внутренней поверхности ограждения

α в – коэффициент тепловосприятия внутренней поверхности ограждения = 8,7 Вт/(м 2 /ºС)

2. Определяем сопротивление теплопередаче входной двери:

R одд = 0,6 · R онс тр = 0,6 · 1,4 =0,84 , (2.5),

3. К установке принимаются двери с известным R req 0 =2,24 ,

4. Определяем коэффициент теплопередачи входной двери:

, (2.6),

5. Определяем скорректированный коэффициент теплопередачи входной двери:

2.2. Определение потерь тепла через ограждающие конструкции.

В зданиях, сооружениях и помещениях с постоянным тепловым режимом в течение отопительного сезона для поддержания температуры на заданном уровне сопоставляют теплопотери и теплопоступления в расчетном установившемся режиме, когда возможен наибольший дефицит теплоты.

Теплопотери в помещениях в общем виде состоят из теплопотерь через ограждающие конструкции Q огp , теплозатрат на нагревание наружного инфильтрующегося воздуха, поступающего через открываемые двери и другие проемы и щели в ограждениях.

Потери тепла через ограждения определяются по формуле:

где: А - расчетная площадь ограждающей конструкции или ее части, м 2 ;

K - коэффициент теплопередачи ограждающей конструкции, ;

t int - температура внутреннего воздуха, 0 С;

t ext - температура наружного воздуха по параметру Б, 0 С;

β – добавочныетеплопотери, определяемые в долях от основных теплопотерь. Добавочныетеплопотери приняты по ;

n –коэффициент, учитывающий зависимость положения наружной поверхности ограждающих конструкций по отношению к наружному воздуху, принимается по Таблице 6 .

Согласно требованиям п 6.3.4 в проекте не учитывались теплопотери через внутренние ограждающие конструкции, при разности температур в них 3°С и более.

При расчете теплопотерь подвальных помещений за высоту надземной части принято расстояние от чистого пола первого этажа до отметки земли. Подземные части наружных стен рассматриваются полы на грунте. Потери тепла через полы на грунте вычисляются путем разбиения площади пола на 4 зоны (I-III зоны шириной 2м, IV зона оставшейся площади). Разбивка на зоны начинается от уровня земли по наружной стене и переносится на пол. Коэффициенты сопротивления теплопередачи каждой зоны приняты по .

Расход теплоты Q i , Вт, на нагревание инфильтрующегося воздуха определен по формуле:

Q i = 0,28G i c(t in – t ext)k , (2.9),

где: G i - расход инфильтрующегося воздуха, кг/ч, через ограждающие конструкции помещения;

C - удельная теплоемкость воздуха, равная 1 кДж/кг°С;

k - коэффициент учета влияния встречного теплового потока в конструкциях, равный 0,7 для окон с тройными переплетами;

Расход инфильтрующегося воздуха в помещении G i , кг/ч, через неплотности наружных ограждающих конструкций отсутствует, в связи с тем, что в помещении установлены стеклопластиковые герметичные конструкции, препятствующие проникновению наружного воздуха в помещение, а инфильтрация через стыки панелей учитываются только для жилых зданий .

Расчет теплопотерь через ограждающие конструкции здания был произведён в программе «Potok», результаты приведены в приложении 1.

Теплопотери через пол, расположенный на грунте, рассчитываются по зонам согласно . Для этого поверхность пола делят на полосы шириной 2 м, параллельные наружным стенам. Полосу, ближайшую к наружной стене, обозначают первой зоной, следующие две полосы - второй и третьей зоной, а остальную поверхность пола - четвертой зоной.

При расчете теплопотерь подвальных помещений разбивка на полосы-зоны в данном случае производится от уровня земли по поверхности подземной части стен и далее по полу. Условные сопротивления теплопередаче для зон в этом случае принимаются и рассчитываются так же, как для утепленного пола при наличии утепляющих слоев, которыми в данном случае являются слои конструкции стены.

Коэффициент теплопередачи К, Вт/(м 2 ∙°С) для каждой зоны утепленного пола на грунте определяется по формуле:

где – сопротивление теплопередаче утепленного пола на грунте, м 2 ∙°С/Вт, рассчитывается по формуле:

= + Σ , (2.2)

где - сопротивление теплопередаче неутепленного пола i-той зоны;

δ j – толщина j-того слоя утепляющей конструкции;

λ j – коэффициент теплопроводности материала, из которого состоит слой.

Для всех зон неутепленного пола есть данные по сопротивлению теплопередаче, которые принимаются по :

2,15 м 2 ∙°С/Вт – для первой зоны;

4,3 м 2 ∙°С/Вт – для второй зоны;

8,6 м 2 ∙°С/Вт – для третьей зоны;

14,2 м 2 ∙°С/Вт – для четвертой зоны.

В данном проекте полы на грунте имеют 4 слоя. Конструкция пола приведена на рисунке 1.2, конструкция стены приведена на рисунке 1.1.

Пример теплотехнического расчета полов, расположенных на грунте для помещения 002 венткамера:

1. Деление на зоны в помещении венткамеры условно представлено на рисунке 2.3.

Рисунок 2.3. Деление на зоны помещения венткамеры

На рисунке видно, что во вторую зону входит часть стены и часть пола. Поэтому коэффициент сопротивления теплопередаче этой зоны рассчитывается дважды.

2. Определим сопротивление теплопередаче утепленного пола на грунте, , м 2 ∙°С/Вт:

2,15 + = 4,04 м 2 ∙°С/Вт,

4,3 + = 7,1 м 2 ∙°С/Вт,

4,3 + = 7,49 м 2 ∙°С/Вт,

8,6 + = 11,79 м 2 ∙°С/Вт,

14,2 + = 17,39 м 2 ∙°С/Вт.

В подвальных помещениях часто размещают спортзалы, сауны, бильярдные, не говоря уже о том, что санитарные нормы многих стран позволяют размещать в подвалах даже спальни. В связи с этим возникает вопрос о теплопотерях через подвалов.

Полы подвалов находятся в условиях когда колебания средней температуры весьма незначительны и составляют от 11 до 9°C. Таким образом, потери тепла через пол хотя и не очень велики, но постоянны в течение года. По данным компьютерного анализа, теплопотери через неизолированный бетонный пол равны 1,2 Вт/м 2 .

Потери тепла происходят по линиям напряжения в грунте на глубину от 10 до 20 м от поверхности земли или от основания здания. Устройство полистиреновой изоляции толщиной около 25 мм может уменьшить теплопотери приблизительно на 5%, что составляет не более 1% общего количества потерь тепла зданием.

Устройство такой же изоляции крыши позволяет снизить теплопотери в зимнее время на 20% или улучшить общую тепловую эффективность здания на 11%. Таким образом, с целью экономии энергии устройство теплоизоляции крыши значительно более эффективно, чем изоляция пола подвала.

Это положение подтверждается анализом микроклимата внутри здания в летнее время. В случае, когда нижняя часть фундаментных стен здания не изолирована, поступающий воздух нагревает помещение, однако тепловая инерция грунта начинает оказывать воздействие на теплопотери, создавая стабильный температурный режим; при этом теплопотери возрастают, а температура внутри подвальных помещений снижается.

Таким образом, свободный теплообмен через конструкции способствует поддержанию летних температур воздуха в помещениях на комфортном уровне. Устройство теплоизоляции под полом в значительной степени нарушает условия теплообмена между бетонным полом и землёй.

Устройство напольной (внутренней) теплоизоляции с энергетической точки зрения приводит к непроизводительным расходам, однако в то же время необходимо учитывать конденсацию влаги на холодных поверхностях и, кроме того, необходимость создания комфортных условий для человека.

Для смягчения ощущения холода можно применить теплоизоляцию, расположив её под полом, что позволит приблизить температуру пола к температуре воздуха в помещении и изолировать пол от нижележащего слоя земли, имеющего относительно низкую температуру. Хотя такая теплоизоляция может увеличить температуру пола, тем не менее в этом случае температура обычно не превышает 23°C, что на 14°C ниже температуры человеческого тела.

Таким образом, для уменьшения ощущения холода от пола с целью обеспечения наиболее комфортных условий лучше всего применять ковровые покрытия или устраивать деревянный пол по бетонному основанию.

Последний аспект, который должен быть рассмотрен в данном энергетическом анализе, касается потерь тепла в месте стыка пола со стеной, не защищённой засыпкой. Такой узел встречается в зданиях, стоящих на склоне.

Как показывает анализ потерь тепла, в этой зоне в зимнее время возможны значительные теплопотери. Поэтому для уменьшения влияния погодных условий рекомендуется фундамент изолировать по наружной поверхности.

Статьи по теме: