Методы испытаний кирпича. Технические характеристики и свойства силикатного кирпича Водопоглощение кирпича керамического

Силикатный кирпич благодаря своим характеристикам востребован в индивидуальном, сельском строительстве и при возведении объектов общего (коммерческого) назначения. Он подходит для устройства колонн и стеновых конструкций, как подвергающимся нагрузкам, так и само несущих. Характеристика силикатного кирпича во многом определяется методом его изготовления. Силикатный кирпич изготавливается путем автоклавного синтеза смеси извести (10%), песка(90%) и воды. Обработка сырого сформованного кирпича горячим паром под высоким давлением наделяет искусственный стройматериал свойствами камня, но с идеально точными размерами .

Рассмотрим основные характеристики силикатного кирпича.

  • Морозостойкость
  • Водопоглащение
  • Плотность кирпича
  • Теплопроводность
  • Звукоизоляция

Прочность силикатного кирпича и маркировка

По критериям прочности силикатный кирпич выпускается следующих марок М - 75; 100; 125; 150; 200 и 250. Иногда встречается кирпич М300 и М350. Высокая прочность силикатного кирпича на сжатие (кг/см2) - главное достоинство стенового материала. Показатель прочности (от 7 до 35 МПа) отражен в маркировке кирпича и обозначается буквой «М». Линейный ряд представлен продукцией марки от М 75 до М 200. Числовое значение показывает величину максимально допустимого давления в килограммах на 1 кв. см. кирпича. Например, кирпич марки М 100 выдерживает давление/нагрузку без последующей деформации в 100 кг на каждый см2. Если рассматривать одноэтажное здание, то нагрузка на стены редко превышает 100 кг/см2, поэтому для возведения стен используют силикатные камни марки М 100. Но при возведении более высоких строений требуется кирпич, допускающий большую нагрузку - М150 или М200.

Морозостойкость кирпича

Морозостойкость силикатного кирпича измеряется в циклах и, наряду с прочностью, является показателем его долговечности. Если по прочности силикатные образцы имеют целую линейку продукции, то по морозостойкости изготавливается только четыре типа, которые обозначаются как F15, F25, F35, F50. Причем лицевой кирпич выпускают только двух марок - F35 и F50. Число (цифра) в маркировке обозначает число замерзаний и оттаиваний силикатного материала в воде. Морозостойкость рядового кирпича, например, марки F25 должна выдерживать, как минимум, 25 циклов замораживания (t= -18град.С) и столько же оттаивания (t= +20град.С) без признаков разрушения - трещин или шелушения поверхности.

Цифры в маркировке морозостойкость кирпича показывают его потенциальную способность противостоять циклам замораживания, и получены эти данные в жестких лабораторных испытаниях. В природе же насыщение кирпича влагой происходит не так интенсивно, да и перепады температур с плюса на минус, не такие резкие, как при испытаниях. Поэтому при правильных инженерных решениях, касающихся паро- и гидроизоляции, долговечность силикатного кирпича значительно увеличивается.

Водопоглащение

Водопоглощение силикатного кирпича напрямую зависит от его пористости. На пористость изделия влияет: зернистость компонентов исходной смеси, ее влажность и величина удельного давления при прессовании. Водопоглощение силикатного продукта не должно превышать 13%. При намокании облицовочного кирпича от дождей теплопроводность силикатного кирпича может увеличиться в несколько раз, что снижает теплоизоляционные параметры наружной стены. Пониженная стойкость кирпича к воздействию влаги сглаживается путем его обработки гидрофобными пропитками. Приобретая водоотталкивающие свойства, кирпич при этом сохраняет способность дышать. Однако, учитывая повышенную склонность материала к водопоглощению, силикатный кирпич не используют при возведении фундаментов, подвалов и помещений, эксплуатация которых проходит во влажностном режиме.

Плотность кирпича

На прочность стенового материала оказывает влияние такая опция, как плотность кирпича силикатного. Эта величина определяется отношением массы одного кирпича к его объему, в который входят, естественно, и поры и пустоты, присутствующие в изделии. Чем меньше пустот в теле силикатного бруска, тем он прочнее.

Плотность силикатного кирпича, кг/м3:

  • Полнотелый - 1840...1933
  • Пустотелый - 1135...1577

Теплопроводность

В прямой зависимости от плотности силикатного образца находится коэффициент теплопроводности силикатного кирпича, который находится в пределах 0,35-0,7 Вт/(мград.С).

Коэффициент теплопроводности у силикатного полнотелого кирпича - 0,7-0,8 Вт/м*К, у кирпича с техническими пустотами - 0,66-0,68 Вт/м*К, а у щелевого - 0,4 Вт/м*К. То есть, чем ниже этот показатель, тем теплоизоляционные свойства кирпича выше

Звукоизоляция

Силикатный кирпич отличается от керамического лучшей звукоизоляцией. Средний показатель звукопоглащения составляет 64 Дб.Используя такое качество материала, как превосходная звукоизоляция, силикатный кирпич успешно используют при устройстве межкомнатных перегородок.

Так же как и кирпич облицовочный , силикатный выпускается несколько видов. Из рядового кирпича (250х120х65 мм и 250х120х88 мм) возводят стены, колонны, перегородки. Лицевой кирпич, белый или с пигментом, при кладке наружных стен, служит фактурой самого здания. Выбор кирпича (марки, размера и фактуры) должен аргументироваться условиями будущей эксплуатации строения и требованиями эстетики. Правильный выбор силикатного материала позволит потребителю оптимизировать затраты на возведение/ремонт объекта, выйти на более эффективный уровень строительного процесса и построить здание, внутри - комфортное, а внешне - современное и презентабельное.

Водопоглощение кирпича – является одной из важнейших показателей на гигроскопичность в процентном соотношении.

Чем выше гидроскопичность кирпича, тем ниже его прочность.

Этот показатель демонстрирует пористость изделия, которая зависит от его состава.

Ведь гигроскопичность кирпича достаточно внушительно сказывается на морозостойкости материала. По этой причине при насыщении влагой материала прочность его значительно уменьшится в сравнении с сухим материалом. Для этого необходимо учитывать этот важный показатель при выборе кирпича для возведения загородной усадьбы.

Для того чтобы узнать гигроскопичность кирпича, материал кладут в печь на несколько часов при температуре 110-120 ºС. После нагревания кирпич охлаждают при естественной температуре, далее производят взвешивание. Потом его погружают в воду на 2 суток и снова взвешивают. По разнице в весе определяется какое количество впиталось в материал в процентном соотношении. Для строительного кирпича увеличение массы не должно быть превышено более 5%, а для отделочного блока не выше 14%.

Строительный кирпич подразделяют 3 основных вида

Строительный кирпич делится на три разновидности: бетонный блок, силикатный и керамический кирпич.

  • бетонный блок;
  • силикатный;
  • керамический кирпич.

Изготовление бетонного кирпича происходит путем залива в специально подготовленные формы цементным раствором. При этом в строительстве не пользуется большим спросом из-за большого веса, слабой звукоизоляции, высокой теплопроводностью и дороговизной. Из положительных черт бетонного кирпича можно отметить низкое водопоглощение около 5%, в некоторых видах 3%, отличную прочность для кладки несущих стен и устойчивость к быстро меняющимся атмосферным условиям.

Силикатный кирпич на 89,2% состоит из песка, остальной процент составляет известь и связующие добавки.

В состав силикатного блока входит 89,2% песка, остальной процент составляет известь и связующие добавки. В некоторых случаях в состав заготовки добавляют красящий пигмент для придания блоку необходимого оттенка. Водопоглощение у силикатов иногда достигает 15%. По этой причине не рекомендуется применение в местах с повышенной влажностью. Таких как цокольные помещения, кладка фундаментов, бань и т.д. Силикатный блок имеет хорошую звукоизоляцию, приемлемую цену и достаточно прочен для кладки несущих стен. Недостатком является высокая теплопроводность в сравнении с керамическим кирпичом.

Тускло-горчичный цвет керамического кирпича свидетельствует о недообжиге, а местами черный наоборот – о переобжиге.

Керамический блок изготавливается из смеси глин и путем обжига в туннельной печи при температуре 1000ºС. Обожженная по требуемым стандартам керамическая заготовка имеет красно-коричневый цвет и при незначительном ударе издает звонкий звук. Также брак можно отличить и по цвету керамической заготовки. Тускло-горчичный цвет показывает о недообжиге, а местами черный о переобжиге. По стандарту красного керамического блока минимальное водопоглощение должно составлять 6%, но может достигнуть и 14%. Оптимальное же водопоглощение составляет 8%. У керамического блока структура слоистая. Водопоглощение находится на среднем показателе. Из-за впитанной влаги керамического кирпича между слоями и не возможном быстром высвобождении воды в период значительных перепадов температуры и неблагоприятных погодных условий керамический кирпич начинает разрушаться. В начале появляются мелкие трещинки, которые в последствии перерастают в сквозные трещины. Вследствие чего керамический кирпич утрачивает свои свойства.

архитектурные возможности кирпича

Кирпич - это искусственный камень правильной формы, выполненный из минеральным материалов, основным назначением которого является использование в качестве строительного материала, для устройства.

С древних времен из кирпича выкладывали сложные конструкции, Здания, сооружения из кирпича выполняли еще со времен древнего Египта и Рима. Обожжённый кирпич на Руси стал использоваться с конца XV века, о чем свидетельствуют прекрасно сохранившиеся до нашего времени стены храмов прошлых веков, других жилых и не жилых исторически ценных зданий и сооружений, которых великое множество во всем Мире.

Из кирпича создавали и до настоящего времени создают настоящие произведения искусства, со своим характером и уникальностью. Прекрасным примером в наше время являются неповторимые города Европы, культурные столицы большинства государств, которые не перестают удивлять работой архитекторов.

С развитием строительной сферы, технологии и качество кирпича как строительного материала, получило достаточно изменений, свойств высокого качества, надежности и долговечности. Потому спрос на этот материал всегда высок и он всегда востребован.

Существует несколько видов кирпича и классификация по разным критериям, каждый из которых обладает своими свойствами, достоинствами и недостатками, каждый из которых мы рассмотрим в этой рубрике. Но также имеются и общие характеристики, присущие каждому виду кирпича как изделию, приведем их ниже.

Основные свойства и характеристики кирпича:

1.Размер кирпича

2.Марка по показателю прочности

3.Теплопроводность кирпича

4. Морозостойкость кирпича

5. Водопоглощение кирпича

Размер кирпича

в странах СНГ определяются как:

– стандартный кирпич (одинарный) 250х120х65 мм

– полуторный кирпич 250х120х88 мм

– двойной кирпич 250х120х138 мм

в Европейских странах свой подход к размеру кирпича:

– кирпич евро 250х88х65 мм

– одинарный 288х138х65 мм

Кроме того, в зависимости от проекта и архитектурных решений здания, кирпич выполняют разного размера и формы, цвета.

фасад кирпичного дома

Марка кирпича по показателю прочности:

Прочность кирпича – это его способность, без разрушения, выдержать механическую нагрузку на сжатие, растяжение и изгиб. Это одна из основных характеристик, обозначается буквой М и следующей за ней цифрой: М50, М75, М100, М125, М150, М175, М200, М250, М300, которая определяет сколько килограммов на 1 см² может выдержать изделие.

Теплопроводность кирпича:

Коэффициент теплопроводности кирпича – это соотношение количества тепловой энергии, теряемого за 1 метр толщины конструкции при разнице температур в 1 градус между наружной и внутренней поверхностью.

Чем ниже коэффициент, тем выше теплопроводность, в условиях низких температур для строительства жилых сооружений, более подходит кирпич с низкой теплопроводностью, если одной из задач является сохранение тепла в помещении.

Полнотелый кирпич – имеет теплопроводность 0,5-0,6 Вт/м °С. И характеризуется довольно высокой теплопроводностью.

– Пустотелый кирпич – имеет коэффициент теплопроводности 0,32-0,39 Вт/м °С., поскольку воздух в пустотах имеет более низкую теплопроводность и есть возможность строить стены более тонкими в сравнении с использованием полнотелого кирпича.

фасад из красного кирпича

Морозостойкость кирпича:

Это параметр изделия, который определяет выдержку материала на чередующееся заморозку и оттаивание, до появления существенных изменений в структуре материала. Обозначается буквой F и следующим за ней числом, которое показывает количество циклов заморозки и оттаивания данного вида кирпича. Например – F15, F25, F35, F50. Чем больше число, следующее за буквой F, тем более устойчив кирпич к перепадам температур. Рекомендуемая марка по морозостойкости не ниже F35. Данный показатель определяется при создании экстремальных условий для изделия, которые возникают крайне редко или совсем не происходят с кирпичом.

Для определения морозостойкости, кирпич полностью насыщают водой. При замораживании, при температуре минус 15-20°С часть воды замерзает в порах с образованием льда. В структуре кирпича возникает внутреннее давление, связанное с переходом воды из жидкого в твердое состояние с увеличением объема примерно на 9%, что и приводит при многократном повторении к расшатыванию структуры с последующим ее разрушением.

Чем менее пористей структура кирпича тем тон более морозостойкий, соответственно самый морозостойкий кирпич это полнотелый, выдерживает больше количество циклов.

Водопоглощение кирпича:

Водопоглощение кирпича – величина, которая в процентах показывает какое количество влаги данный вид кирпича способен впитать и удержать. Водопоглощение определяется следующим образом: кирпич выдерживают в печи при температуре 105-110 °С определённое время, остужают и производят его взвешивание. Затем, его помещают в воду на определённый промежуток времени и вновь подвергают взвешиванию. Разница между этими двумя взвешиваниями в процентном соотношении и есть водопоглощение кирпича.

Имеется взаимозависимость таких показателей как морозостойкость и водопоглощение. Чем выше водопоглощение, тем ниже морозостойкость, поскольку больше воды замерзает в структуре кирпича и соответственно сильнее давление оказывается на изделие изнутри.

Кирпич с водопоглощением выше 9% имеет низкую морозостойкость. Рекомендованным считается водопоглощение 6-12%.

Сфера применения строительных материалов определяется исходя из их характеристик. Водопоглощение кирпича относится к числу основных. От этого показателя зависит прочность и морозостойкость строения в целом, поэтому его следует учесть при выборе вида кирпичных блоков для строительства.

Особенности влагоудержания как эксплуатационной характеристики

Способность материала впитывать и удерживать воду называют водопоглощением. Кирпичные блоки в возведенном строении подвержены атмосферным воздействиям, поскольку имеют постоянный контакт с окружающей средой. Влагу, с которой соприкасаются, они впитывают в себя. Важно, чтобы показатель водопоглощения был оптимальным и соответствовал нормам, установленным для каждого вида кирпича. Слишком высокий уровень поглощения влаги способствует ухудшению микроклимата в доме из-за неуспевающей испаряться воды. А при минусовой температуре она превращается в лед и расширяется, вследствие чего в кирпиче образуются трещины, а это приводит его в негодность, прочность здания снижается. При слишком низком показателе кирпичные блоки слабо сцепляются с раствором, что также ухудшает прочность.

От чего зависит?

Показатель уровня водопоглощения кирпича напрямую зависит от его пористости и наличия в нем пустот. Чем их больше, тем больше влаги впитывает блок. Следовательно, у пустотелого кирпича гигроскопичность будет выше, чем у полнотелого. Кроме того, способность материала впитывать влагу зависит от его вида. Различают 3 разновидности:

  • силикатный;
  • керамический;
  • бетонный.

Материал из бетона меньше всего впитывает влагу.

В состав силикатного кирпича входит песок, немного извести со связующими примесями. Этот вид материала наиболее гигроскопичен. Керамический изготавливается из глины путем обжига при повышенной температуре, достигающей 1000 градусов. Водопоглощение керамического кирпича тоже довольно высокое, кроме того слоистая структура надолго удерживает влагу внутри, что приводит к разрушению блока при снижении температуры воздуха ниже 0 градусов. Бетонный изготавливают из цементного раствора. Таким кирпичным блокам присущ самый низкий показатель поглощения воды, но, к сожалению, это единственное его преимущество над остальными видами кирпича.

Требования к водопоглощению кирпича

Существуют определенные пределы оптимального водопоглощения кирпича. Устанавливаются эти нормы в зависимости от его вида, назначения и с учетом дальнейших условий эксплуатации возведенного сооружения. В таблице представлены показатели, обозначающие границы возможного уровня поглощения влаги строительным материалом.

Как определяют?


Перед замачиванием кирпичи высушиваются в печи.

Определяют уровень поглощения воды кирпичным блоком проведя испытания материала по методике идентичной для всех его видов, за исключением некоторых особенностей для силикатных кирпичей. Исследования проводят на неповрежденных образцах, отобранных из партии в количестве трех штук. Их предварительно высушивают в печи при температуре в пределах 110-120 градусов. Затем блок, охлажденный естественным образом при комнатной температуре не выше 25 градусов, взвешивают и на 2-е суток опускают в воду.

Качество кирпича - определяющий параметр при выборе этого материала. От качества выбранного кирпича напрямую зависит долговечность, тепло, экологичность, внешний вид будущего дома. Документом, подтверждающим качество изделия является сертификат соответствия. Для подтверждения соответствия партии кирпича стандартам качества, прописанным в ГОСТ 530-2012, на каждом заводе-изготовителе проводятся испытания качества готовой продукции.
Методы испытаний при входном контроле качества сырья и материалов указывают в технологической документации на изготовление изделий с учетом требований нормативных документов на это сырье и материалы.
Методы испытаний при проведении производственного операционного контроля устанавливают в технологической документации на изготовление изделий.

Определение геометрических размеров

Размеры изделий, толщину наружных стенок, диаметр цилиндрических пустот, размеры квадратных и ширину щелевидных пустот, длину посечек, длину отбитостей ребер, радиус закругления смежных граней и глубину фаски на ребрах измеряют металлической линейкой по ГОСТ 427 или штангенциркулем по ГОСТ 166. Погрешность измерения - ±1 мм:

  • Длину, ширину и толщину каждого изделия измеряют по краям (на расстоянии 15 мм от угла) и в середине ребер противоположных граней. За результат измерения принимают среднеарифметическое значение трех измерений.
  • Толщину наружных стенок измеряют минимум в трех местах - посередине каждой грани изделия. За результат измерения принимают наименьшее значение.
  • Размеры пустот измеряют внутри пустот не менее чем на трех пустотах. За результат измерения принимают наибольшее значение.
  • Ширину раскрытия трещин измеряют при помощи измерительной лупы по ГОСТ 25706, после чего изделие проверяют на соответствие требованиям. Точность измерения 0,1 мм.
  • Глубину отбитости углов и ребер измеряют при помощи угольника по ГОСТ 3749 и линейки по ГОСТ 427 по перпендикуляру от вершины угла или ребра, образованного угольником, до поврежденной поверхности. Погрешность измерения - ±1 мм.

Определение правильности формы

  • Отклонение от перпендикулярности граней определяют, прикладывая угольник к смежным граням изделия и измеряя металлической линейкой по ГОСТ 427 наибольший зазор между угольником и гранью. Погрешность измерения - ±1 мм.
    За результат измерений принимают наибольший из всех полученных результатов измерений.
  • Отклонение от плоскостности изделия определяют, прикладывая одну сторону металлического угольника к ребру изделия, а другую - вдоль каждой диагонали грани и измеряя щупом, калиброванным в установленном порядке, или металлической линейкой по ГОСТ 427 наибольший зазор между поверхностью и ребром угольника. Погрешность измерения - ±1 мм.
    За результат измерения принимают наибольший из всех полученных результатов измерений.

Определение наличия известковых включений

Наличие известковых включений определяют после пропаривания изделий в сосуде.

Образцы, не подвергавшиеся ранее воздействию влаги, укладывают на решетку, помещенную в сосуд с крышкой. Налитую под решетку воду нагревают до кипения. Пропаривание продолжают в течение 1 ч. Затем образцы охлаждают в закрытом сосуде в течение 4 ч, после чего их проверяют на соответствие требованиям.

Определение пустотности изделий

Пустотность изделий определяют как отношение объема песка, заполняющего пустоты изделия, к объему изделия.

Пустоты изделия, лежащего на листе бумаги на ровной поверхности отверстиями вверх, заполняют сухим кварцевым песком фракции 0,5-1,0 мм. Изделие убирают, песок пересыпают в стеклянный мерный цилиндр и фиксируют его объем. Пустотность изделия Р, %, вычисляют по формуле:

где V пес - объем песка, мм 3 ;

l - длина изделия, мм;

d - ширина изделия, мм;

h - толщина изделия, мм.

За результат измерения принимают среднеарифметическое значение трех параллельных определений и округляют до 1 %.

Определение скорости начальной абсорбции воды

Подготовка образцов

Образцом является целое изделие, с поверхности которого удалены пыль и излишки материала. Образцы высушивают до постоянной массы при температуре (105±5)°С и охлаждают до комнатной температуры.

Оборудование

  • Емкость для воды площадью основания большей, чем постель изделия, и высотой не менее 20 мм, с решеткой или ребрами на дне для создания расстояния между дном и поверхностью изделия. Уровень воды в емкости должен поддерживаться постоянным.
  • Секундомер с ценой деления 1 сек.
  • Сушильный шкаф с автоматическим поддержанием температуры (105±5)°С.
  • Весы, обеспечивающие точность измерения не менее 0,1% массы сухого образца.

Проведение испытания

Образец взвешивают, измеряют длину и ширину погружаемой в емкость с водой опорной поверхности образца и вычисляют ее площадь. Изделие погружают опорной поверхностью в емкость с водой с температурой (20±5) °С на глубину (5±1) мм и выдерживают в течение (60±2) с. Затем испытуемый образец извлекают из воды, удаляют лишнюю воду и взвешивают.

Обработка результатов

Скорость начальной абсорбции рассчитывают для каждого образца с точностью до 0,1 кг/(м 2 ·мин) по формуле:

где С абс - скорость начальной абсорбции воды, кг/(м 2 ·мин.);

m 1 - масса сухого образца, г;

m 2 - масса образца после погружения, г;

S - площадь погружаемой поверхности, мм 2 ;

t - время выдерживания образца в воде (постоянная величина t = 1 мин).

Скорость начальной абсорбции воды вычисляют как среднеарифметическое результатов пяти параллельных определений.

Определение наличия высолов

Для определения наличия высолов половинку изделия погружают отбитым торцом в емкость, заполненную дистиллированной водой, на глубину 1 - 2 см и выдерживают в течение 7 сут (уровень воды в сосуде должен поддерживаться постоянным). По истечении 7 сут образцы высушивают в сушильном шкафу при температуре (105±5) ºС до постоянной массы, а затем сравнивают со второй частью образца, не подвергавшейся испытанию, и проверяют на соответствие.

Предел прочности при изгибе и сжатии

  • Предел прочности при изгибе кирпича определяют в соответствии с ГОСТ 8462.
  • Предел прочности при сжатии изделий определяют по ГОСТ 8462 со следующими дополнениями.

Подготовка образцов

Образцы испытывают в воздушно-сухом состоянии. Испытываемый образец состоит: из двух целых кирпичей , уложенных постелями друг на друга, или из одного камня.

Подготовку опорных поверхностей изделий для приемосдаточных испытаний производят шлифованием, для образцов из клинкерного кирпича - применяют выравнивание цементным раствором; при арбитражных испытаниях кирпича и камня применяют шлифование, клинкерного кирпича - выравнивание цементным раствором, приготовленным по 2.6 ГОСТ 8462. Допускается при проведении приемосдаточных испытаний применять иные способы выравнивания опорных поверхностей образцов при условии наличия корреляционной связи между результатами, полученными разными способами, а также доступности проверки информации, являющейся основанием для такой связи.

Отклонение от плоскостности опорных поверхностей испытываемых образцов не должно превышать 0,1 мм на каждые 100 мм длины. Непараллельность опорных поверхностей испытуемых образцов (разность значений высоты, измеренная по четырем вертикальным ребрам) должна быть не более 2 мм.

Испытуемый образец измеряют по средним линиям опорных поверхностей с погрешностью до ±1 мм.

На боковые поверхности образца наносят осевые линии.

Проведение испытания

Образец устанавливают в центре машины для испытаний на сжатие, совмещая геометрические оси образца и плиты, и прижимают верхней плитой машины. При испытаниях нагрузка на образец должна возрастать следующим образом: до достижения примерно половины ожидаемого значения разрушающей нагрузки - произвольно, затем поддерживают такую скорость нагружения, чтобы разрушение образца произошло не ранее чем через 1 мин. Значение разрушающей нагрузки регистрируют.

Значение предела прочности при сжатии изделий R сж, МПа (кгс/см 2) вычисляют по формуле:

R сж = P / F , (3)

где Р - наибольшая нагрузка, установленная при испытании образца, Н (кгс);

F - площадь поперечного сечения образца (без вычета площади пустот); вычисляют как среднеарифметическое значение площадей верхней и нижней поверхностей, мм 2 (см 2).

Значение предела прочности при сжатии образцов вычисляют с точностью до 0,1 МПа (1 кгс) как среднеарифметическое значение результатов испытаний установленного числа образцов.

Плотность, водопоглощение, морозо- и кислотостойкость кирпича

Среднюю плотность, водопоглощение и морозостойкость (метод объемного замораживания) изделий определяют в соответствии с ГОСТ 7025.

Результат определения средней плотности изделий округляют до 10 кг/м 3 .

  • Водопоглощение определяют при насыщении образцов водой температурой (20±5) ºС при атмосферном давлении.
  • Морозостойкость определяют методом объемного замораживания. Оценку степени повреждений всех образцов проводят через каждые пять циклов замораживания и оттаивания.
  • Кислотостойкость клинкерного кирпича определяют в соответствии с ГОСТ 473.1.
  • Удельную эффективную активность естественных радионуклидов Аэфф определяют по ГОСТ 30108.

Коэффициент теплопроводности кладок

Коэффициент теплопроводности кладок определяют по ГОСТ 26254 со следующими дополнениями.

Коэффициент теплопроводности определяют экспериментально на фрагменте кладки, который с учетом растворных швов выполняют толщиной из одного тычкового и одного ложкового рядов кирпичей или камней. Кладку из укрупненных камней выполняют толщиной в один камень. Длина и высота кладки должны быть не менее 1,5 м (см. рисунок 2). Кладку выполняют на сложном растворе марки 50, средней плотностью 1800 кг/м 3 , состава 1,0:0,9:8,0 (цемент:известь:песок) по объему, на портландцементе марки 400 с осадкой конуса для полнотелых изделий 12-13 см, для пустотелых - 9 см. Допускается выполнение фрагмента кладки, отличной от указанной выше, с применением других растворов, состав которых указывают в протоколе испытаний.

δ - толщина кладки; 1 - кладка из одинарного кирпича; 2 -; кладка из утолщенного кирпича; 3 - кладка из камня

Рисунок 2 - Фрагмент кладки для определения коэффициента теплопроводности

Фрагмент кладки из изделий со сквозными пустотами следует выполнять по технологии, исключающей заполнение пустот кладочным раствором или с заполнением пустот раствором, о чем делается запись в протоколе испытаний. Кладку выполняют в проеме климатической камеры с устройством по контуру теплоизоляции из плитного утеплителя; термическое сопротивление теплоизоляции должно быть не менее 1,0 м 2 ·°С/Вт. После изготовления фрагмента кладки его наружную и внутреннюю поверхности затирают штукатурным раствором толщиной не более 5 мм и плотностью, соответствующей плотности испытуемых изделий, но не более 1400 кг/м 3 и не менее 800 кг/м 3 .

Фрагмент кладки испытывают в два этапа:

  • этап 1 - кладку выдерживают и подсушивают в течение не менее двух недель до влажности не более 6 %;
  • этап 2 - проводят дополнительную сушку кладки до влажности 1 % - 3 %.

Влажность изделий в кладке определяют приборами неразрушающего контроля. Испытания в камере проводят при перепаде температур между внутренней и наружной поверхностями кладки Δt = (tв - tн)≥ 40 °С, температуре в теплой зоне камеры tв = 18 °С - 20 °С, относительной влажности воздуха (40±5) %. Допускается сокращение времени выдержки кладки при условии обдува наружной поверхности и обогрева внутренней поверхности фрагмента трубчатыми электронагревателями (ТЭНами), софитами и др. до температуры 35 °С - 40 °С.

Перед испытанием на наружной и внутренней поверхностях кладки в центральной зоне устанавливают не менее пяти термопар по действующему нормативному документу. Дополнительно на внутренней поверхности кладки устанавливают тепломеры по действующему нормативному документу. Термопары и тепломеры устанавливают так, чтобы они охватывали зоны поверхности ложкового и тычкового рядов кладки, а также горизонтального и вертикального растворных швов. Теплотехнические параметры фиксируют после наступления стационарного теплового состояния кладки не ранее чем через 72 ч после включения климатической камеры. Измерение параметров проводят не менее трех раз с интервалом 2-3 ч.

Для каждого тепломера и термопары определяют среднеарифметическое значение показаний за период наблюдений q i и t i . По результатам испытаний вычисляют средневзвешенные значения температуры наружной и внутренней поверхностей кладки t н ср, t в ср, с учетом площади ложкового и тычкового измеряемых участков, а также вертикального и горизонтального участков растворных швов по формуле

t н(в) ср = (Σt i F i)/(Σt i F i), (4)

где t i - температура поверхности в точке i , °С;

F i - площадь i -го участка, м 2 .

По результатам испытаний определяют термическое сопротивление кладки R к пр, м 2 ·°С/Вт, с учетом фактической влажности во время испытаний по формуле

R к пр = Δt /q ср, (5)

где Δt = t в ср - t н ср, °С;

q ср - среднее значение плотности теплового потока через испытываемый фрагмент кладки, Вт/м 2 .

По значению R к пр вычисляют эквивалентный коэффициент теплопроводности кладки λ экв (ω), Вт/(м·°С), по формуле

λ экв (ω) = δ/R к пр, (6)

где δ - толщина кладки, м.

Строят график зависимости эквивалентного коэффициента теплопроводности от влажности кладки (см. рисунок 3) и определяют изменение значения λ экв на один процент влажности Δλ экв, Вт/(м·°С), по формуле

Δλ экв = (λ экв1 - λ экв2)/(ω 1 - ω 2). (7)

Рисунок 3 - График зависимости эквивалентного коэффициента теплопроводности от влажности кладки

Коэффициент теплопроводности кладки в сухом состоянии λ 0 , Вт/(м·°С), вычисляют по формулам:

λ 0 II = λ экв2 - ω 2 · Δλ экв (8)

или λ 0 I = λ экв1 - ω 1 · Δλ экв. (9)

За результат испытания принимают среднеарифметическое значение коэффициента теплопроводности кладки в сухом состоянии λ 0 , Вт/(м·°С), вычисленное по формуле

λ 0 = (λ 0 I + λ 0 II)/2. (10)

Статьи по теме: