Использование атмосферного электричества для стимуляции роста растений. Овощи на электричестве, электрогрядка, стимулятор роста растений, высокая грядка, электро грядка, огород без забот, атмосферное электричество, свободное электричество, электростимуляц

Начнем с того, что индустрия сельского хозяйства разрушена до основания. Что дальше? Не пора ли собирать камни? Не пора ли объединить все творческие силы, чтобы дать селянам и дачникам те новинки, которые позволят резко поднять урожайность, сократить ручной труд, найти новые пути в генетике... Я бы предложил читателям журнала быть авторами рубрики "Для села и дачников". Начну с давней работы "Электрическое поле и урожайность."

В 1954 г., когда я был слушателем Военной академии связи в Ленинграде, страстно увлекся процессом фотосинтеза и провел интересное испытание с выращиванием лука на подоконнике. Окна комнаты, в которой я жил, выходили на север, и потому солнца луковицы получать не могли. Я высадил в два удлиненных ящика по пять луковиц. Землю брал в одном и том же месте для обоих ящиков. Удобрений у меня не было, т.е. были созданы как бы одинаковые условия для выращивания. Над одним ящиком сверху, на расстоянии полуметра (рис.1) расположил металлическую пластину, к которой прикрепил провод от высоковольтного выпрямителя +10 000 В, а в землю этого ящика воткнул гвоздь, к которому подсоединил "-" провод от выпрямителя.

Сделал это для того, что по моей теории катализа создание в зоне растений высокого потенциала приведет к увеличению дипольного момента молекул, участвующих в реакции фотосинтеза, И потянулись дни испытаний. Уже через недели две я обнаружил, что в ящике с электрическим полем растения развиваются более эффективно, чем в ящике без "поля"! Спустя 15 лет этот эксперимент повторили в институте, когда потребовалось добиться выращивания растений в космическом корабле. Там, находясь в замкнутом от магнитного и электрического полей, растения развиваться не могли. Пришлось создавать искусственное электрическое поле, и теперь на космических кораблях растения выживают. А если вы живете в железобетонном доме, да еще на верхнем этаже, разве ваши растения в доме не страдают от отсутствия электрического (да и магнитного) поля? Суньте гвоздь в землю цветочного горшка, а проводок от него подсоедините к очищенной от краски или ржавчины отопительной батареи. В этом случае ваше растение приблизится к условиям жизни на открытом пространстве, что очень важно для растений да и для человека тоже!

Но на этом мои испытания не закончились. Проживая в г.Кировограде, я решил развести на подоконнике помидоры. Однако зима наступила столь быстро, что я не успел выкопать на огороде кусты помидор, чтобы пересадить их в цветочные горшки. Мне попался примерзший куст с небольшим живым отросточком. Я принес его домой, поставил в воду и... О, радость! Через 4 дня от нижней части отростка выросли белые корешки. Я пересадил его в горшок, и, когда он вырос с отростками, стал таким же методом получать новые саженцы. Всю зиму я лакомился свежими помидорами, выращенными на подоконнике. Но меня преследовал вопрос: неужели возможно в природе такое клонирование? Возможно, подтверждали мне старожилы в этом городе. Возможно, но...

Я переехал в Киев и попытался таким же образом получить саженцы помидор. У меня ничего не получилось. И я понял, что в Кировограде мне удавался этот метод потому, что там, в то время, когда я жил, в водопроводную сеть пускали воду из скважин, а не из Днепра, как в Киеве. Грунтовые воды в Кировограде имеют небольшую долю радиоактивности. Вот это и сыграло роль стимулятора роста корневой системы! Тогда я приложил к верхушке отростка помидора +1,5 В от батарейки, а "-" подвел к воде сосуда, где стоял отросток (рис.2), и через 4 дня на отростке, находящемся в воде, выросла густая "борода"! Так мне удалось клонировать отростки помидор.

Недавно мне надоело следить за поливом растений на подоконнике, я сунул в землю полоску фольгированного стеклотекстолита и большой гвоздь. К ним подсоединил провода от микроамперметра (рис.3). Сразу отклонилась стрелка, потому что земля в горшке была сырая, и сработала гальваническая пара "медь - железо". Через неделю увидел, как ток стал падать. Значит, наступала пора полива... Кроме того, растение выбросило новые листочки! Так растения реагируют на электричество.

Изобретение относится к области сельского хозяйства и может быть использовано для электростимуляции растений.

Назначение способа: интенсификация жизнедеятельности растений в пробирках, к примеру, картофеля, выращиваемых способом «ин витро».

Известен способ электростимуляции жизнедеятельности растений, когда в почву на глубину, удобную при дальнейших обработках, в соответствующих пропорциях вносят металлические частицы в виде порошка, стержней, пластин различной формы и конфигурации, выполненных из металлов различных типов и их сплавов, отличающихся своим отношением к водороду в электрохимическом ряду напряжений металлов, учитывая состав почвы и тип растения, при этом значение возникающих токов будет находиться в пределах параметров электрического тока, оптимального для электростимуляции растений (прототип RU 2261588 C2, A01G 7/04, 05.06.2002).

Сущность изобретения

Известен способ электростимуляции жизнедеятельности растений, когда в почву на глубину, удобную при дальнейших обработках, вносят металлические частицы, отличающиеся своим отношением к водороду в электрохимическом ряду напряжений металлов, при этом значение возникающих токов будет находиться в пределах параметров электрического тока, оптимального для электростимуляции растений (прототип RU 2261588 C2, A01G 7/04, 05.06.2002).

Заявляемый в качестве прототипа способ предполагает электростимуляцию растений и основан на свойстве изменения водородного показателя воды при соприкосновении ее с металлами.

Недостатком вышеуказанного способа является его применимость к грунтовым посадкам растений.

Задачей предлагаемого способа является создание системы электростимуляции жизнедеятельности растений, выращиваемых способом «ин витро».

Технико-биологический результат способа заключается в возможности эффективного использования электрической энергии для интенсификации роста растений микроклонального размножения.

Этот технико-биологический результат достигается использованием пробирки специальной конструкции для выращивания меристемы и электрической схемы для создания электрической цепи, проходящей через пробирку с растением. Система электростимуляции растений, выращиваемых способом «ин витро», представлена на чертеже.

Система включает батарею 1, выключатель 2, регулятор тока 3 с прибором регистрации силы тока, реле времени 4, электропроводящую пробирку 5 с металлическим наконечником, питательный раствор с растением 6, пробку с электропроводником 7.

Система электростимуляции растений, выращиваемых способом «ин витро», функционирует следующим образом.

Электропроводящая пробирка 5 устанавливается на штатив таким образом, чтобы металлический наконечник касался металлической основы штатива, к которой подсоединен проводник от плюсовой клеммы батареи 1. Для прекращения подачи тока используется выключатель 2, регулировка выполняется регулятором тока 3 с приборами регистрации силы тока и напряжения, подача тока устанавливается с помощью реле времени 4, функционирующего по заданному режиму. Электростимуляция начинается с периода, когда срез меристемы помещается в питательный раствор, тогда электропроводник 7 пробки касается зеркала питательного раствора 6. По мере формирования корневой системы и появления ростка проводник должен касаться стебля растения. После пробки проводник соединяется с минусовой клеммой батареи 1, обеспечивая этим замкнутую электрическую цепь. Система функционирует до достижения растением необходимого уровня развития, после чего переносится в открытый грунт.

Способ электростимуляции жизнедеятельности растений, отличающийся тем, что растения выращивают «ин витро», электропроводящую пробирку для выращивания растений с металлическим наконечником и пробкой устанавливают на штатив таким образом, чтобы металлический наконечник касался металлической основы штатива, к которой подсоединен проводник от плюсовой клеммы батареи, для прекращения подачи тока используют выключатель, регулируют подачу тока с помощью регулятора тока с приборами регистрации силы тока и напряжения, подачу тока устанавливают с помощью реле времени, а электростимуляцию начинают тогда, когда срез меристемы растения помещают в питательный раствор, таким образом, чтобы электропроводник пробки касался зеркала питательного раствора, пробку с электропроводником соединяют с минусовой клеммой батареи, после достижения растением необходимого уровня развития его переносят в открытый грунт.

Похожие патенты:

Изобретение относится к области сельского хозяйства и селекции, в частности к оздоровлению от вирусов растений малины, выращиваемых in vitro. Способ включает заготовку эксплантов вегетативных частей растений, высадку их на питательную среду и шестикратную обработку периодической последовательностью разнонаправленных импульсов магнитной индукции.

Способ энергосберегающего импульсного облучения растений включает воздействие на растения потоком оптического излучения, который получают включением групп светодиодов с различным спектором излучения, регулируют параметры импульсов, регулируют фазовый угол импульсов в каждой группе светодиодов.

Изобретение относится к сельскому хозяйству. Способ подкормки фруктовых деревьев включает опрыскивание щелочным раствором нанодисперсного магнетита, стабилизированного нафтеновыми кислотами, выкипающими в пределах 250-300 градусов Цельсия при давлении 5 мм ртутного столба с добавлением калийного микроудобрения из расчета 30-40 грамм на 100 литров воды.

Изобретение относится к средствам освещения растений при выращивании в защищенной среде. Устройство содержит: компьютер (1) с интерфейсом (2), управляющее устройство (3), блок (4) энегроснабжения, по меньшей мере, одну лампу (7), вентилятор (5) для охлаждения светодиодных элементов и подачи CO2 или азота (N) из резервуара (6), присоединенного через соответствующую магистраль (8).

Изобретение относится к области сельского хозяйства. Устройство содержит источник бесперебойного питания, выходом соединенный с входом стабилизированного блока питания и через тумблер с входом регулируемого выпрямителя, минусовый выход которого соединен первой общей шиной со вторыми выводами накопительного конденсатора, первого и второго ключей, стабилизированный блок питания, плюсовый вывод и общая шина которого подключены к цепи питания логических элементов, схем и блоков, элемент ограничения тока, соединенный через третий ключ с анодом первого диода, катод которого подключен к первому выводу накопительного конденсатора и катодам второго и третьего диодов, аноды которых соединены с катодами соответственно четвертого и пятого диодов, первый драйвер, выходом соединенный с управляющим входом третьего ключа, первый и второй синхронно связанные коммутаторы, выходы которых соответственно соединены через второй и третий драйверы с управляющими входами первого и второго ключей, индуктор, первый вывод катушки которого соединен с первым выводом второго ключа, элемент НЕ, выход которого через одновибратор подключен к входу блока звуковой сигнализации.

Изобретение относится к области сельского хозяйства, в частности к растениеводству. Способ включает фотографирование семян кукурузы, которые дополнительно обрабатывают электромагнитным полем крайне высокой частоты, после которого проводят повторное фотографирование с последующим сравнением температуры каждого семени до и после воздействия электромагнитного поля крайне высокой частоты.

Группа изобретений относится к области сельского хозяйства и электричества. Модульная система включает корпус, который содержит: ряд светоизлучающих диодов (СИД), по меньшей мере, двух различных цветов для генерации света в пределах цветового спектра, при этом СИД смонтированы, предпочтительно с фиксацией при защелкивании, на пластине, предпочтительно теплопроводящей, или рядом с ней, которая оборудована средствами охлаждения СИД с помощью охладителя; процессор для регулирования величины тока, подаваемого на ряд СИД, так, чтобы величина подаваемого на них тока определяла цвет освещения, генерируемого рядом СИД, и плоский светопроницаемый элемент, содержащий связанные с СИД светопроницаемые линзы, для управления углом рассеяния света, излучаемого каждым СИД, для равномерного освещения поверхности; при этом корпус снабжен каналом для приема трубки для подачи питания и, как вариант, охладителя для системы СИД.

Изобретение относится к сельскому хозяйству, в частности к производству овощей в защищенном грунте, в теплицах с автоматической системой управления факторами среды.

Изобретение относится к области обработки растительных материалов, а именно к устройствам обработки растущих растений световым излучением. Предложенное устройство представляет собой контейнер, в котором находятся несколько светоизолированных друг от друга камер, скомпонованных в многоэтажную конструкцию. Каждая камера снабжена своей емкостью с субстратом для выращивания растений, источником света своей длины волны и своей видеокамерой. Источник света на кронштейне - радиаторе и видеокамера смонтированы на стенках камеры под прямым углом друг к другу. Растущие растения освещаются источником света через прозрачную боковую стенку емкости, а наблюдение видеокамерой ведется через другую перпендикулярную ей боковую стенку. Общие для всех камер источник электропитания и блок контроля и управления смонтированы на одной плате и закреплены внутри контейнера. Данное изобретение обеспечивает возможность исследования фототропических и гравитропических реакций растений на облучение их различными видами света, видимого и невидимого спектров, при различных уровнях гравитации, как в наземных условиях, так и в условиях, близких к невесомости, на космических аппаратах. 3 з.п. ф-лы, 2 ил.

Изобретение предоставляет осветительную систему для регулирования роста растений, при этом система содержит: группу твердотельных источников света, выполненных с возможностью излучения света предварительно заданной длины волны или диапазона длин волн; и охлаждающую установку, содержащую трубку, имеющую по меньшей мере одно впускное отверстие для получения газообразной охлаждающей среды и множество выпускных отверстий для высвобождения указанной газообразной охлаждающей среды из указанной охлаждающей установки, причем охлаждающая установка находится в механическом и тепловом контакте с указанными источниками света. Изобретение также предоставляет способ регулирования роста растения в теплице или ростовой камере. Изобретение предоставляет возможность содействия фотосинтезу растения посредством изменения условий (интенсивность света, температура, концентрация CO2) локально вокруг растения. 2 н. и 13 з.п. ф-лы, 4 ил.

Изобретение относится к области сельского хозяйства. Способ включает воздействие постоянным электрическим током плотностью 0,25-1,0 мкА/мм2 при напряжении 1,5-3 В в течение 72-144 часов непосредственно на укорененном растении при подведении отрицательного потенциала к привою, а положительного - к подвою. При этом подводят стимулирующую энергию с обеспечением S-образного характера увеличения степени срастания привоя и подвоя в зависимости от поглощаемой энергии. Стимуляцию заканчивают при достижении степенью срастания значения 0,8-0,9 путем снижения напряжения обратно пропорционально квадратному корню из времени стимулирования до значений 0,12-0,08 от начального напряжения. Способ позволяет обеспечить высокую степень приживаемости прививок растений в весенне-летний период. 1 ил., 1 пр.

Группа изобретений относится к области сельского хозяйства, в частности к растениеводству и пчеловодству. Осветительное светоизлучающее диодное (СИД) устройство выполнено с возможностью излучения по меньшей мере одного спектрального пика (401, 402 и 403) на длине волны, совпадающей с повышенной отражательной способностью цветков опыляющихся растений (710, 711). Причем указанное осветительное СИД устройство выполнено с возможностью излучения по меньшей мере одного спектрального пика (401, 402 и 403) на длине волны, совпадающей с повышенной чувствительностью световосприятия зрения насекомого (840). В способе растения (710, 711) освещают осветительным СИД устройством. Изобретения позволяют улучшить эффективность опыления, снизить смертность насекомых и повысить урожайность. 2 н. и 18 з.п. ф-лы, 12 ил.

Изобретение относится к светотехнике, в частности к полупроводниковой светотехнике, предназначенной для использования в парниках и теплицах в качестве межрядковой досветки. Система включает линейный облучатель, снабженный набором из, по меньшей мере, двух сменных светопреобразующих элементов 5, средствами крепления облучателя над тепличными растениями и средствами изменения положения облучателя по высоте и углу наклона. Облучатель включает несущий корпус 3, выполненный в виде протяженной профилированной детали из теплопроводящего материала, имеющий боковые стенки, сопряженные с основанием, и снабженный торцевыми крышками; по крайней мере, одну печатную плату 2 с, по крайней мере, одним светоизлучающим диодом 1 с максимумом излучения в диапазоне 430-470 нм, размещенную на основании корпуса и снабженную выводом для подключения к питающему напряжению. Корпус снабжен отверстием для упомянутых выводов. Отражатель 4 представляет собой протяженную деталь с боковыми стенками и основанием. Отражатель и торцевые крышки выполнены из материала или покрыты материалом, имеющим коэффициент диффузного отражения 0,95-0,99. Отражатель имеет в поперечном сечении форму трапеции и установлен в корпусе своим основанием на печатной плате со светодиодами. Основание отражателя 4 снабжено прорезями для размещения светодиодов 1. Облучатель включает средства герметизации внутреннего пространства облучателя и средства крепления в корпусе светопреобразующего элемента 5, торцевой крышки, платы со светодиодами, отражателя. Светопреобразующие элементы закреплены в корпусе на расстоянии от диодов и выполнены из оптически прозрачного материала с нанесенным на его внутреннюю и/или внешнюю поверхности слоем, содержащим диспергированные частицы с максимумами пиков флуоресценции в диапазоне длин волн 600-680 нм и полушириной в диапазоне 50-180 нм. Светопреобразующие элементы 5 выполнены с разными максимумами пиков флуоресценции. При таком выполнении обеспечивается повышение урожайности тепличных культур при снижении энергопотребления системы, повышается технологичность производства облучателя, удобство его сборки и эксплуатации с возможностью замены съемных деталей облучателя, в частности платы со светодиодами, светопреобразующей пластины. 25 з.п. ф-лы, 5 ил.

Изобретение относится к области сельского хозяйства. Устройство содержит источник бесперебойного питания, выходом соединенный с входом стабилизированного блока питания, плюсовый и общий выводы которого подключены к цепи питания логических элементов, схем и блоков, а через первый тумблер выходом соединенный с входом первого источника высокого напряжения, минусовый вывод которого соединен с общей шиной, связанной с входом элемента ограничения тока, первый и второй ключи, управляющие входы которых соединены с выходами соответственно первого и второго драйвера, первый, второй, третий, четвертый, пятый и шестой диоды. Вход первого ключа соединен с плюсовым выводом первого источника высокого напряжения, а выход с анодом первого диода, катод которого соединен с первым выводом первого накопительного конденсатора, с катодом второго диода и первым выводом третьего ключа, второй вывод которого соединен с анодом второго и катодом третьего диодов, с первым выводом четвертого ключа, а через последовательно соединенные первичную обмотку трансформатора тока и обмотку индуктора со вторым выводом первого накопительного конденсатора. Второй вывод четвертого ключа соединен с анодом третьего диода. Вторичная обмотка трансформатора тока через активный выпрямитель подключена к индикатору тока разряда, программируемый задающий генератор, подключенный через усилитель-ограничитель с гальванической развязкой к формирователю сигналов управления, четвертый и пятый выводы которого подключены к первым выводам соответственно первого и второго, синхронно связанных коммутаторов, второй и третий выводы которых соединены вместе и подключены к шестому выводу формирователя сигналов управления, а их четвертые выводы соответственно через третий и четвертый драйверы подключены к управляющим входам третьего и четвертого ключей, усилитель постоянного напряжения, выходом подключенный к первому входу устройства сравнения, второй вход которого соединен с выходом задатчика опорного уровня, одновибратор, пульт управления, подключенный к управляющему входу цифрового таймера, выход которого соединен через элемент «НЕ» с входом блока звуковой сигнализации. Дополнительно в устройство введены второй источник высокого напряжения, входом связанный с входом первого источника высокого напряжения, плюсовый вывод второго источника высокого напряжения подключен к общей шине, а минусовый вывод - к входу второго ключа, выход которого соединен с катодом четвертого диода, анод которого соединен со вторыми выводами четвертого ключа и второго накопительного конденсатора, первый вывод которого соединен со вторым выводом первого накопительного конденсатора, второй и третий тумблеры, первые выводы которых подключены соответственно к катоду пятого и аноду шестого диодов. Вторые выводы соединены соответственно с первым и вторым выводами первого и второго накопительных конденсаторов, анод пятого и катод шестого диодов соединены вместе и подключены ко второму и первому выводам соответственно первого и второго накопительных конденсаторов, регулятор тока заряда, входом связанный с выходом элемента ограничения тока, а выходом со вторым и первым выводами соответственно третьего и четвертого ключей. Датчик Холла размещен в рабочей области индуктора и подключен через усилитель импульсов к входу пикового детектора, выход которого через формирователь абсолютного значения соединен с входом усилителя постоянного напряжения, третий и четвертый коммутаторы, синхронно связанные с первым и вторым коммутаторами, первый и второй элементы «И», первые входы которых соединены вместе и через резистор подключены к выходу цифрового таймера, четвертый тумблер, первый вывод которого подключен к первым входам первого и второго элементов «И». Второй его вывод соединен с общим выводом, первые выводы третьего и четвертого коммутаторов соединены соответственно с первым и вторыми выводами формирователя сигналов управления, третий вывод которого соединен со вторым и третьими выводами соответственно третьего и четвертого коммутаторов, а через одновибратор соединен с управляющим входом сброса пикового детектора. Третий и второй выводы соответственно третьего и четвертого коммутаторов подключены к общему выводу, а их четвертые выводы соединены со вторыми входами соответственно первого и второго элементов «И», выходы которых подключены к входам соответственно первого и второго драйверов. Устройство позволяет проводить фиксацию активных частот воздействия, влияющих на функциональную активность, стимуляцию обменных процессов и адаптацию растений к внешнему фактору среды. 3 ил.

Изобретение относится к световым приборам, а именно к светильникам с определенным спектром излучаемого света, используемым для досветки растений, которым не хватает солнечного света, к так называемым фитосветильникам. Светодиодный фитосветильник состоит из корпуса 1, на верхней поверхности которого размещена солнечная батарея 2, а на нижней поверхности размещен отражатель 3, в котором размещен как минимум один светодиод, который через выключатель соединен с аккумуляторной батареей 6, расположенной внутри корпуса, и солнечной батареей 2. Соединение солнечной батареи 2 с аккумуляторной батареей 6 выполнено через диод. Корпус по своей длине условно разделен на две неравные части, на большей части которого, на его верхней поверхности размещена как минимум одна солнечная батарея, а на нижней поверхности размещен отражатель, в котором размещен как минимум один синий светодиод с длиной волны излучения 400-500 нм и один красный светодиод с длиной волны излучения 600-700 нм. Аккумуляторная батарея 6 размещена внутри корпуса 1 в меньшей по его длине части, перпендикулярно его длине и вдоль его боковой стенки. В корпусе снизу выполнено отверстие 7 или втулка, расположенное(ая) в пространстве между аккумуляторной батареей и отражателем, посредством которой корпус можно одевать сверху на держатель 8, выполненный в виде вертикального стержня, нижний конец которого приспособлен для втыкания в грунт. Такое выполнение обеспечивает удобство установки, позиционирования и эксплуатации устройства, возможность более удобной его зарядки, а также снижение стоимости. 2 з.п. ф-лы, 2 ил.

Изобретение относится к области сельского хозяйства, в частности к растениеводству. Фотоэлектрохимическая ячейка содержит фотоэлектроды, электролит и электролитный мостик. При этом фотоэлектроды представляют собой растение с листьями, стволом и корнями, насыщенными наночастицами металлов, обладающих свойствами гигантского комбинационного рассеяния, например Au, Сu с размерами 0,2-100 нм. Причем электролит и концентрация наночастиц позволяют растению осуществлять фотосинтез. Растение насыщают искусственным путем, а именно замачиванием семян перед посадкой, посадкой черенков растения в наносодержащую среду или поливом. Использование устройства позволяет упростить конструкцию фотоэлектрохимической ячейки. 1 з.п. ф-лы, 2 пр.

Изобретение относится к области селекции и семеноводства, а также к лесному хозяйству. Способ включает двухэтапный отбор при проведении изреживаний. При первом изреживании оставляют перспективные деревья, имеющие различия электрического сопротивления привоя и подвоя от 10 до 20 кОм. Деревья, имеющие различия электрического сопротивления более 30 кОм, удаляют. При втором изреживании оставляют семенники, имеющие показатели биоэлектрических потенциалов деревьев с интенсивными обменными процессами, потенциальными возможностями роста и семенной продуктивности. Способ позволяет повысить селекционный эффект при создании семенных плантаций. 5 табл., 1 пр.

Изобретение относится к области сельского хозяйства, в частности к плодоводству, физиологии растений и питомниководству. Способ включает измерение динамики электропроводности тканей прививки. При этом электропроводность тканей прививки измеряют в трех местах прививки: привой, место прививки и подвой, в первый день и через 14-16 дней после ее осуществления. К качественно прижившимся относят те, у которых корреляция значений электропроводности привоя и подвоя стремится к единице, стандартное отклонение от первоначальных значений внутри сорто-подвойной комбинации не превышает пределы 75-85 мкСм и характер динамики имеет монотонный рост. Способ позволяет провести раннюю оценку качества срастания прививочных компонентов и повысить выход качественного посадочного материала. 4 ил., 1 табл.

Изобретение относится к области сельского хозяйства и может быть использовано при электростимуляции жизнедеятельности растений в пробирках. В способе растения выращивают «ин витро», электропроводящую пробирку для выращивания растений с металлическим наконечником и пробкой устанавливают на штатив таким образом, чтобы металлический наконечник касался металлической основы штатива, к которой подсоединен проводник от плюсовой клеммы батареи. Для прекращения подачи тока используют выключатель, регулируют подачу тока с помощью регулятора тока с приборами регистрации силы тока и напряжения. Подачу тока устанавливают с помощью реле времени, а электростимуляцию начинают тогда, когда срез меристемы растения помещают в питательный раствор, таким образом, чтобы электропроводник пробки касался зеркала питательного раствора, пробку с электропроводником соединяют с минусовой клеммой батареи. Растение переносят в открытый грунт после достижения необходимого уровня развития. Способ позволяет эффективно использовать электрическую энергию для интенсификации роста растений микроклонального размножения. 1 ил.

ЭЛЕКТРОКУЛЬТУРА СЕМЯН И РАСТЕНИЙ

Не правда ли, странное название - электрокультура? Что же это такое? Кратко говоря, наука, изучающая, как электрическое поле влияет на живые организмы. Теперь уже твердо установлено, что для них это поле имеет такое же значение, как, скажем, воздух, свет, тепло...

НЕМНОГО ИСТОРИИ

Электрокультура как наука, видимо, зародилась в 1776 году, когда французский аббат, позже академик, П. Берталон заметил, что растения близ громоотводов растут, развиваются куда лучше, чем на некотором отдалении от них. Он предположил: в этом виноваты электрические разряды, проходящие через громоотвод во время грозы.

Итальянец Ф. Гардини решил проверить догадку аббата. В 1793 году он натянул над фруктовыми деревьями в своем саду несколько рядов громоотводов (попросту проволоки) и принялся ожидать хорошего урожая. Три года над его садом бушевали грозы, однако урожай не только не повысился, а, наоборот, часть растений завяла.

Причину этого нашли только в 1836 году, когда знаменитый М. Фарадей доказал на себе, что если живой организм поместить в металлическую сетку (ее потом назвали клеткой Фарадея), то ему не надо бояться гроз. Ведь металлическая сетка не пропускает электричества, а силовые линии буквально обходят ее.

Только теперь стало ясно, что ряды проволочных громоотводов в саду Гардини создали над растениями некоторое подобие клетки Фарадея.

И чтобы окончательно убедиться в этом, французский ученый А. Грандо в 1848 году прикрыл одно растение такой клеткой, а второе оставил открытым. И что же? Первое отстало по развитию от второго.

Вывод напрашивался сам собой: электричество крайне необходимо для растений.

Но этот вывод еще надо было точно доказать. Такое доказательство провели лишь через 122 года после открытия Берталона. В 1898 году немецкий ученый С. Леместр и, спустя четыре года, его соотечественник О. Принсгейм прикрыли растение клеткой Фарадея, создав в ней искусственное электростатическое поле. И после целой серии опытов убедились, что оно вполне компенсирует нехватку природного электричества.
Больше того, если создать поле мощнее естественного, то рост растений даже ускоряется. Следовательно, электричество может существенно нам помочь в выращивании сельскохозяйственных культур.

ЭЛЕКТРИЧЕСКОЕ ПОЛЕ ПЛАНЕТЫ

Еще древним было прекрасно известно, что натертый о шерсть янтарь притягивает кусочки материи и бумаги. Сейчас-то мы знаем, что вокруг него создается электрическое поле. Но интересно, что точно так же ведут себя в электрическом поле и другие предметы растительного происхождения - например, стебельки и семена. Если их положить за заземленный электрод 2, а на верхний, параллельный ему электрод 1 подать положительный потенциал, они, как по команде, поднимутся и замрут вдоль силовых линий (рис. 1).

Рис. 2. Так эквипотенциальные поверхности огибают высокие здания и другие возвышенности..
Рис. 3. Колебания напряженности электрического поля Земли (кривая 1) и активности Солнца (кривая 2) за двадцать лет. Буквой W обозначено число Вольфа, характеризующее интенсивность деятельности Солнца.
Рис. 4. Изменение напряженности электрического поля атмосферы над ровной местностью в течение суток, выраженное в процентах к среднему значению.
Рис. 5. Взаимосвязь урожайности сельскохозяйственных культур в США (верхняя кривая) с колебаниями солнечной активности (нижняя кривая) за пятьдесят лет. По данным А. Чижевского.

А как только мы уберем заряд, так наши стебельки и семена хаотически рассыплются: как видите, электрическое поле смогло победить даже силу земного притяжения.
Очевидно, нечто подобное происходит и в природе, только на сей раз роль «подопытных кроликов» играют настоящие растения - в вертикальном положении их поддерживает электрическое поле Земли, и с его помощью они растут, устремляются вверх.

Но мы начинали с опыта, и поэтому логично возникает вопрос: что же считать «верхним электродом» нашей планеты? Ответ в 1902 году дали англичанин С. Хевйсайд и американец А. Кеннели. Они предположили, что в атмосфере на высоте примерно 100 км находится какой-то слой положительно заряженных частиц.

Потом, когда эта гипотеза подтвердилась, его назвали ионосферой. Теперь совершенно точно установлено, что между нею и отрицательно заряженной Землей, как между пластинами гигантского сферического конденсатора, существует электрическое поле. Оно характеризуется напряженностью, потенциалом относительно Земли и эквипотенциальностью.

Первые две величины изменяются с высотой: напряженность снижается (у поверхности она составляет 130 В/м, а на 6 км падает до 10 В/м), потенциал же, наоборот, возрастает (в 500 м от поверхности он равен 50 кВ, а вблизи ионосферы достигает 212 кВ).

Что же касается третьей величины... Планету как бы охватывают эквипотенциальные оболочки, причем напряженность каждой из них относительно Земли строго постоянна. Эти свойства электрического поля планеты уже используют в технике.
Например, американец М. Хилл из университета Д. Гопкинса запатентовал недавно оригинальный вариант автопилота.

На крыльях и хвосте самолета устанавливаются датчики. Пока машина летит на определенной высоте, словно скользя по эквипотенциальной поверхности, они бездействуют. Но как только самолет немного опустится или поднимется, тем самым перейдя в другой эквипотенциальный слой, датчики мгновенно среагируют на изменение потенциала и выдадут управляющий сигнал на рули.

Интересно, что такой автопилот может вести машину и на малой высоте. Ей ничуть не грозит столкновение с каким либо препятствием - ведь эквипотенциальные оболочки плавно огибают даже малейшие возвышенности (рис. 2).

Правда, настройку аппаратуры придется все время корректировать: электрическое поле Земли только называется статическим, а на самом деле его потенциал постоянно меняется. Уже замечены 11-летние циклы его колебаний, совпадающие с периодами солнечной активности (рис. 3); есть изменения годичные и даже суточные (рис. 4), причем во второй половине дня напряженность поля Земли гораздо выше, чем утром.

Итак, жизнь растений зависит от электрического поля атмосферы, а его состояние, в свою очередь, неразрывно связано с деятельностью Солнца. И не случайно урожаи, собранные в период наибольшей активности нашего светила, превышают на 54% средние сборы и на 108% недороды (рис. 5).


ПОТОКИ АЭРОИОНОВ

Как удалось установить, заряды от ионосферы к поверхности переносят аэроионы - положительно и отрицательно заряженные атомы и молекулы газов.
Отрицательные поднимаются вместе с капельками воды к положительно заряженной ионосфере, образуя по пути разнообразные облака: обычные (на высоте 10 км), перламутровые (25-30 км) и таинственные серебристые (80- 90 км).

Рис. 6. Изменение количества положительных и отрицательных аэроионов в 1 куб. см воздуха на протяжении года.
Рис. 7. Зависимость всхожести семян сахарной свеклы сорта Ялтушковская односеменная от часа обработки их электростатическим полем одной и той же напряженности.

А положительные опускаются к отрицательно заряженной поверхности, где их первыми встречают растения. В одном кубическом сантиметре воздуха у самой земли обычно насчитывается до 750 положительных и 650 отрицательных аэроионов, причем эта диспропорция возрастает именно к лету, во время царствования флоры (рис. 6).

Любопытно, что в помещении положительных аэроионов очень мало - воздух, проходя через форточку, оставляет снаружи почти половину их, а большая часть остальных оседает на стенах и разных предметах. Восполнить дефицит нетрудно - стоит внести в помещение сильно заряженный отрицательный электрод, как к нему тут же через все щели потянутся положительные аэроионы.

Объяснение этому явлению нашли только после того, как А. Беккерель и В. Рентген создали искусственные аэроионизаторы, а, С. Аррениус использовал теорию электролитической диссоциации при описании воздушной среды. Электроны, оказывается, не стекают с заряженного электрода, как считали раньше, - около него концентрируются аэроионы противоположного знака, которые и нейтрализуют частично первоначальный заряд.

Тогда-то стала ясна и роль громоотвода - заряжаясь от земли отрицательно, он притягивал из атмосферы положительные аэроионы, благотворно влияющие на растения. Так громоотвод стал первым устройством для электрокультуры, хотя создавался он с совсем другой целью...

ЭЛЕКТРОКУЛЬТУРА СЕМЯН

Если уж и активизировать растения электрическим полем, то это надо делать в самой начальной стадии их развития. К такому выводу пришел профессор А. Чижевский, изучив все, что было написано у нас и за рубежом об электрокультуре. И в 1932 году в подмосковном селе Кузьминки под его руководством начались исследования влияния электрического поля на семена овощей.

Их проводили на установке, похожей на ту, что изображена на рисунке 1, только на электрод 1 для привлечения положительных аэроионов к семенам подавался отрицательный потенциал. А второй электрод поместили под столом с подопытными семенами.

Для усиления эффекта верхний электрод сделали в виде игольчатой «люстры» с торчащими во все стороны маленькими громоотводами. Опыты прошли успешно, и Чижевский мог с полным правом утверждать: если на семена огурцов от 5 до 20 мин воздействовать электричеством, их всхожесть возрастет сразу на 14-16% (см. таблицу 1).

Война приостановила работы, начатые А. Чижевским. И только через 20 лет их продолжили сотрудники Челябинского института механизации и электрификации сельского хозяйства, правда, сосредоточив внимание уже на злаковых культурах.

Они доказали абсолютную правильность выводов основоположника электрокультуры в нашей стране (см. таблицу 2).

Таблица 2

Совхозы

Площадь

посева в га

Урожай
в ц/га

Контроль

в ц/га

Повышение
в ц/га

Увеличение
урожайности в %

Багарянский 57 17,4 15,5 2,1 15
Аргаяшский 81 22,5 18,6 3,9 21
Учхоз ЧИМЭСХ 15,1 33,6 30 3,6 11

К 1975 году было сделано немало.

Например, для семянзерновых подобрали самые выгодные режимы и дозы предпосевной обработки, при этом весьма эффективным оказалось поле коронного (большой интенсивности) разряда - оно привлекало к растениям больше всего положительных аэроионов.

А потом настала очередь и других культур. В 1973-1975 годах во Всероссийском НИИ сахарной свеклы и сахара после обработки семян этой культуры добились не только высоких урожаев - выход сахара из корней увеличился на 10-11%)
А вот на Талды-Курганской опытной сельскохозяйственной станции облучили полем семена кукурузы.
И что же? Урожай зеленой массы возрос на 11-12%

Использовали электрокультуру и сотрудники Украинского НИИ овощеводства и бахчеводства. После трехлетних опытов им удалось на 14-17% поднять урожаи столовой моркови.
Но все-таки почему же семена, недолго побывав под напряжением, так заметно изменили свои свойства?

Попробуем разобраться в этом.

Как известно, в природе семена формируются летом, в период максимальной напряженности атмосферного поля, когда в воздухе больше всего положительных аэроионов.

Приближается осень, постепенно уменьшается и напряженность поля Земли. Затихает обмен веществ в клетках растений. Но вот заканчивается долгая зима, с каждым днем нарастает напряженность поля, становится теплее, светлее. И тогда-то семена ненадолго вносят в искусственное электрическое поле, словно наполняя их энергией, подгоняя клеточный биопотенциал до летнего уровня.
Теперь «подзаряженные» семена быстрее приспособятся к электрическому полю Земли и прорастать, конечно, станут активнее.

Но почему-то при весенней обработке напряженность искусственного поля из года в год оставляют одинаковой. А ведь это неправильно - напряженность естественного поля зависит от состояния солнечной активности. Значит, и обработку семян нужно проводить дифференцированно, строго учитывая деятельность Солнца.

Больше того, при сеансах электрооблучения немалое значение имеет даже время суток. А секрет этого прост: на постоянный режим облучения накладывается естественный режим изменения напряженности поля атмосферы.
И вот, наконец, весной обработанные семена высевают, и прорастают они уже под непосредственным влияниемэлектрического поля Земли.

ЭЛЕКТРОКУЛЬТУРА РАСТЕНИЙ

Семя проросло. День за днем растение вытягивает стебель к положительно заряженной ионосфере и зарывает корни поглубже в почву (отрицательный потенциал!). Не правда ли, очень похоже на магнитную стрелку, только расположенную вертикально, вдоль силовых линий поля Земли?

Но вот пришло лето, стебельки начинают расти еще интенсивнее - ведь все время повышается напряженность поля атмосферы, а положительных аэроионов в воздухе становится все больше.

И так будет продолжаться до тех пор, пока силы, создаваемые разностью потенциалов ионосфера - Земля, не уравновесятся тяжестью самого стебля и движущихся по нему питательных соков. И молекулы питательных веществ, превратившись в соках в ионы и повинуясь законам электролитической диссоциации, направятся в противоположные стороны: отрицательные - вверх, к листьям, а положительные - вниз. Это внутри растений.

А снаружи их? Как установил канадский профессор Л. Мурр, с верхушек растений к ионосфере струится поток отрицательных электронов, а навстречу ему, на листья, дождем сыплются положительные аэроионы. Поэтому травы и деревья можно смело считать потребителями атмосферных зарядов, которые они поглощают, нейтрализуют и в таком виде накапливают.

Что же касается другого полюса растений, его корневой системы, то выяснилось - на нее благотворно влияют отрицательные аэроионы.
Исследователи проложили между корнями обычного томата положительно заряженный стержень - электрод, вытягивающий отрицательные аэроионы из почвы. Урожай томатов возрос сразу на 52%.

Кроме того, оказалось, что почве с высоким содержанием органических веществ свойствен катионообменный характер, то есть в удобрениях накапливается большой отрицательный заряд. В этом, кстати сказать, видят одну из причин повышения урожаев при применении удобрений.

Мы уже знаем, какую роль играет влага в электрокультуре семян. А о том, что она значит для электрокультуры растений, достаточно красноречиво свидетельствуют данные американского ученого М. Франца: при облучении полем увлажненных ростков моркови ее урожайность повысилась на 125%.

Электрокультурой растений занимался и А. Чижевский - в теплицах совхоза «Марфино» под Москвой он подвесил над грядками с огурцами отрицательно заряженную «люстру» (рис. 8). Результаты не замедлили сказаться - опытные огурцы сорта Клинские при трех сборах в два раза превзошли по урожайности контрольные экземпляры.

Итак, основываясь на опытах с электрокультурой семян и растений, можно смело утверждать, что она дает отличную возможность резко повысить производительность и рентабельность сельского хозяйства. Электрокультура может и должна помочь «зеленой революции» в решении продовольственной проблемы.

ТМ 1978 г.

ЛЕОНИД ШАПОВАЛОВ, кандидат технических наук,
научный сотрудник Украинского научно-исследовательского
института механизации и электрификации сельского хозяйства г. Киев


Электрические явления играют важную роль в жизни растений. В ответ на внешние раздражения в них возникают очень слабые токи (биотоки). В связи с этим можно предположить, что внешнее электрическое поле может оказать заметное воздействие на темпы роста растительных организмов.
Еще в XIX веке ученые установили, что земной шар заряжен отрицательно по отношению к атмосфере. В начале XX столетия на расстоянии 100 Километров от поверхности земли была обнаружена положительно заряженная прослойка - ионосфера. В 1971 году космонавты увидели ее: она имеет вид светящейся прозрачной сферы. Таким образом, земная поверхность и ионосфера представляют" собой два гигантских электрода, создающих электрическое поле, в котором постоянно находятся живые организмы.
Заряды между Землей и ионосферой переносятся аэроионами. Носители отрицательных зарядов устремляются к ионосфере, а положительные аэроионы движутся к земной поверхности, где вступают в контакт с растениями. Чем выше отрицательный заряд растения, тем больше оно поглощает положительных ионов.
Можно предположить, что растения определенным образом реагируют на, изменение электрического потенциала окружающей среды. Более двухсот лет назад французский аббат П. Берталон заметил, что возле громоотвода растительность пышнее и сочнее, чем на некотором расстоянии от него. Позднее его соотечественник ученый Гран- до выращивал два совершенно одинаковых растения, но одно находилось в естественных условиях, а другое было накрыто проволочной сеткой, ограждавшей его от внешнего электрического поля. Второе растение развивалось медленно и выглядело хуже находящегося в естественном электрическом поле. Г рандо сделал заключение, что для нормального роста и развития растениям необходим постоянный контакт с внешним электрическим полем.
Однако до сих пор в действии электрического поля на растения много неясного. Давно замечено, что частые грозы благоприятствуют росту растений. Правда, это утверждение нуждается в тщательной детализации. Ведь грозовое лето отличается не только частотой молний, но и температурой, количеством осадков.
А это факторы, оказывающие на растения весьма сильное воздействие.
Противоречивы данные, касающиеся темпов роста растений вблизи высоковольтных линий. Одни наблюдатели отмечают усиление роста под ними, другие - угнетение. Некоторые японские исследователи считают, что высоковольтные линии негативно влияют на экологическое равновесие.
Более достоверным представляется тот факт, что у растении, произрастающих под высоковольтными линиями обнаруживаются различные аномалии роста. Так, под линией электропередач напряжением 500 киловольт у цветков гравилата увеличивается количество лепестков до 7-25 вместо привычных пяти. У девясила - растения из семейства сложноцветных - происходит срастание корзинок в крупное уродливое образование.
Не счесть опытов по влиянию электрического тока на растения. Еще И. В. Мичурин проводил эксперименты, в которых гибридные сеянцы выращивались в больших ящи* ках с почвой, через которую пропускался постоянный
электрический ток. Было установлено, что рост сеянцев при этом усиливается. В опытах, проведенных другими исследователями, были получены пестрые результаты. В некоторых случаях растения гибли, в других - давали небывалый урожай. Так, в одном из экспериментов вокруг делянки, где росла морковь, в почву вставили металлические электроды, через которые время от времени пропускали электрический ток. Урожай превзошел все ожидания - масса отдельных корней достигла пяти килограммов! Однако последующие опыты, к сожалению, дали иные результаты. По-видимому, исследователи упустили из виду какое-то условие, которое позволило в первом эксперименте с помощью электрического тока получить небывалый урожай.
Почему же растения лучше растут в электрическом поле? Ученые Института физиологии растений им. К- А. Тимирязева АН СССР установили, что фотосинтез идет тем быстрее, чем больше разность потенциалов между растениями и атмосферой. Так, например, если около растения держать отрицательный электрод и постепенно увеличивать напряжение (500, 1000, 1500,
2500 вольт), то интенсивность фотосинтеза будет возрастать. Если же потенциалы растения и атмосферы близки, то растение перестает поглощать углекислый газ.
Создается впечатление, что электризация растений активизирует процесс фотосинтеза. Действительно, у огурцов, помещенных в электрическом поле, фотосинтез протекал в два раза быстрее по сравнению с контрольными. В результате этого у них образовалось в четыре раза больше завязей, которые быстрее, чем у контрольных растений, превратились в зрелые плоды. Когда растениям овса сообщили электрический потенциал, равный 90 вольт, масса их семян увеличилась в конце опыта на 44 процента по сравнению с контролем.
Пропуская через растения электрический ток, можно регулировать не только фотосинтез, но и корневое питание; ведь нужные растению элементы поступают, как правило, в виде ионов. Американские исследователи установили, что каждый элемент усваивается растением при определенной силе тока.
Английские биологи добились существенной стимуляции роста растений табака, пропуская через них постоянный электрический ток силой всего в одну миллионную долю ампера. Разница между контрольными и опытными растениями становилась очевидной уже через 10 дней после начала эксперимента, а спустя 22 дня она была очень заметной. Выяснилось, что стимуляция роста возможна только в том случае, если к растению подключался отрицательный электрод. При перемене полярности электрический ток,

напротив, несколько тормозил рост растений.
В 1984 году в журнале «Цветоводство» была опубликована статья об использовании электрического тока для стимуляции корнеобразо- вания у черенков декоративных растений, особенно укореняющихся с трудом, например у черенков роз. С ними-то и были поставлены опыты в закрытом грунте. Черенки нескольких сортов роз высаживали в перлитовый песок. Дважды в день их поливали и не менее трех часов воздействовали электрическим током (15 В; до 60 мкА). При этом отрицательный электрод подсоединялся к растению, а положительный погружали в субстрат. За 45 дней прижилось 89 процентов черенков, причем у них появились хорошо развитые кор
ни. В контроле (без электростимуляции) за 70 дней выход укорененных черенков составил 75 процентов, однако корни у них были развиты значительно слабее. Таким образом, электростимуляция сократила срок выращивания черенков в 1,7 раза, в 1,2 раза увеличила выход продукции с единицы площади.
Как видим, стимуляция роста под воздействием электрического тока наблюдается в том случае, если к растению присоединяется отрицательный электрод. Это можно объяснить тем, что само растение обычно заряжено отрицательно. Подключение отрицательного электрода увеличивает разность потенциала между ним и атмосферой, а это, как уже отмечалось, положительно сказывается на фотосинтезе.

Благоприятное действие электрического тока на физиологическое состояние растений использовали американские исследователи для лечения поврежденной коры деревьев, раковых образований и т. д. Весной внутрь дерева вводили электроды, через которые пропускали элек- рический ток. Продолжительность обработки зависела от конкретной ситуации. После такого воздействия кора обновлялась.
Электрическое поле влияет не только на взрослые растения, но и на семена. Если их на некоторое время поместить в искусственно созданное электрическое поле, то они быстрее дадут и дружные всходы. В чем причина этого явления? Ученые предполагают, что внутри семян в результате воздействия электрическим полем разрывается часть химических связей, что приводит к возникновению осколков молекул, в том числе частиц с избыточной энергией - свободных радикалов. Чем больше активных частиц внутри семян, тем выше энергия их прорастания. По мнению ученых, подобные явления возникают при действии на семена и других излучений: рентгеновского, ультрафиолетового, ультразвукового, радиоактивного.
Возвратимся к результатам опыта Грандо. Растение, помещенное в металлическую клетку и тем самым изолированное от естественного электрического поля, плохо росло. Между тем в большинстве случаев собранные семена хранятся в железобетонных помещениях, которые, по существу, представляют собой точно такую же металлическую клетку. Не наносим ли мы тем самым ущерб семенам? И не потому ли хранившиеся таким образом семена столь активно реагируют на воздействие искусственного электрического поля?
В Физико-техническом институте АН УзССР разработана установка для предпосевной обработки семян хлопчатника. Семена движутся под электродами, между которыми возникает так называемый «коронный» разряд. Производительность установки - 50 килограммов семян в час. Обработка позволяет получить прибавку урожая в пять центнеров с гектара. Облучение повышает всхожесть семян более чем на 20 процентов, коробочки созревают на неделю раньше обычного, а волокно становится прочнее и длиннее. Растения лучше противостоят различным заболеваниям, особенно такому опасному, как вилт.
В настоящее время электрическая обработка семян различных культур осуществляется в хозяйствах Челябинской, Новосибирской и Курганской областей, Башкирской и Чувашской АССР, Краснодарского края.
Дальнейшее изучение влияния электрического тока на растения позволит еще более активно управлять их продуктивностью. Приведенные факты свидетельствуют о том, что в мире растений еще много непознанного.

26.04.2018

Электрические явления играют важную роль в жизни растений. Ещё более двухсот лет назад французский аббат, позже академик, П. Берталон заметил, что возле громоотвода растительность пышнее и сочнее, чем на некотором расстоянии от него. Позднее его соотечественник, учёный А. Грандо, в 1848 году выращивал два совершенно одинаковых растения, но одно находилось в естественных условиях, а другое было накрыто проволочной сеткой, ограждавшей его от внешнего электрического поля.

Второе растение развивалось медленно и выглядело хуже находящегося в естественном электрическом поле, благодаря чему Грандо сделал заключение, что для нормального роста и развития растениям необходим постоянный контакт с внешним электрическим полем.

Через сто с лишним лет немецкий учёный С. Леместр и его соотечественник О. Принсгейм провели серию опытов, в результате чего пришли к выводу, что искусственно созданное электростатическое поле способно компенсировать нехватку природного электричества, а если оно будет мощнее естественного, то рост растений даже ускоряется, помогая тем самым в выращивании сельскохозяйственных культур.

Почему же растения лучше растут в электрическом поле? Учёные Института физиологии растений им. К. А. Тимирязева АН СССР установили, что фотосинтез идёт тем быстрее, чем больше разность потенциалов между растениями и атмосферой. Так, например, если около растения держать отрицательный электрод и постепенно увеличивать напряжение, то интенсивность фотосинтеза будет возрастать. Если же потенциалы растения и атмосферы близки, то растение перестаёт поглощать углекислый газ. Электрическое поле влияет не только на взрослые растения, но и на семена. Если их на некоторое время поместить в искусственно созданное электрическое поле, то они быстрее дадут дружные всходы.

Понимая высокую эффективность использования электрической стимуляции растений в сельском и приусадебном хозяйстве, был разработан автономный, не требующий подзарядки долговременный источник низкопотенциального электричества для стимуляции роста растений .

Устройство для стимуляции роста растений получило название «ЭЛЕКТРОГРЯДКА», является продуктом высоких технологий (не имеет аналогов в мире) и представляет собой самовосстанавливающийся источник питания, преобразующий свободное электричество в электрический ток в результате применения электроположительных и электроотрицательных материалов, разделённых проницаемой мембраной и помещённых в газовую среду без применения электролитов в присутствии катализатора. Указанное низкопотенциальное электричество практически идентично электрическим процессам, происходящим под воздействием фотосинтеза в растениях и может использоваться для стимуляции их роста.

Устройство "ЭЛЕКТРОГРЯДКА" изобретено в Межрегиональном Объединении Ветеранов Войны Органов Государственной Безопасности "ЭФА-ВЫМПЕЛ", является его интеллектуальной собственностью и охраняется законом РФ. Автор изобретения В.Н. Почеевский.

«ЭЛЕКТРОГРЯДКА» позволяет существенно повысить урожай, ускорить рост растений, при этом они обильнее плодоносят, так как становится более активным сокодвижение.

«ЭЛЕКТРОГРЯДКА» помогает расти растениям как на открытом грунте и в теплицах, так и в закрытых помещениях. Радиус действия одного устройства «ЭЛЕКТРОГРЯДКА» зависит от длины проводов. При необходимости радиус действия устройства можно увеличить используя обычную токопроводящую проволоку.

В случае неблагоприятных погодных условий растения на грядке с устройством «ЭЛЕКТРОГРЯДКА» развиваются намного лучше, чем без него, что хорошо видно на приведённых ниже фотографиях, взятых из видеоролика «ЭЛЕКТРОГРЯДКА 2017 ».

Подробная информация об устройстве «ЭЛЕКТРОГРЯДКА» и принципе его работы представлена на сайте Межрегиональной народной программы «Возрождение родников России» .

Устройство «ЭЛЕКТРОГРЯДКА» является простым и удобным в применении. Подробная инструкция по установке устройства приведена на упаковке и не требует каких-либо специальных знаний или подготовки.


Если вы хотите всегда вовремя узнавать о новых публикациях на сайте, то подпишитесь на

Статьи по теме: