Емкостной датчик приближения человека. Принцип работы емкостных датчиков, на что обратить внимание при подборе

Работа ёмкостных датчиков обычно основана на регистрации изменений параметров генератора, в колебательную систему которого входит ёмкость контролируемого объекта. Простейшие из таких датчиков содержат один LC-генератор на полевом транзисторе и работают по принципу возрастания потребляемого тока или уменьшения напряжения при увеличении ёмкости. Такие устройства при максимальной дальности обнаружения приближающегося объекта не более 0,1 м обладают весьма низкой стабильностью и малой помехоустойчивостью. Более высокие характеристики имеют ёмкостные датчики, схема которых выполнена на основе двух генераторов и работающие по принципу сравнения частоты или фазы колебаний образцового и перестраиваемого (измерительного) генераторов. Например, описанный в . Лучшие из них способны почувствовать приближение человека на расстоянии 2 м. Однако при выполнении на дискретных элементах они получаются слишком громоздкими, а при использовании специализированных микросхем - слишком дорогими.

В предлагаемой статье рассматривается схема ёмкостного датчика, с высокой чувствительностью на микросхеме тонального декодера NJM567 . Эта микросхема и её аналоги (например, NE567) широко используются для обнаружения узкополосных сигналов в диапазоне от 10 Гц до 500 кГц. Они применялись и в системах автоподстройки частоты вращения блока видеоголовок бытовых видеомагнитофонов. Использование встроенного в тональный декодер RC-генератора упрощает схему ёмкостного датчика, а внутренняя петля ФАПЧ этого генератора обеспечивает стабильность и помехоустойчивость датчика.
Дальность обнаружения приближающегося человека - не менее 0,5 м (при длине антенны датчика 1 м), что значительно больше, чем, например, у прибора, выполненного по схеме . В устройстве отсутствуют намоточные изделия (катушки индуктивности), что упрощает его повторение.

Схема ёмкостного датчика изображена на рис. 1. Частотозадающие элементы находящегося в микросхеме DA2 генератора - резистор R6 и конденсатор С5. Сигнал генератора частотой около 15 кГц с вывода 5 микросхемы DA2 подан на фазосдвигающую цепь, образованную подстроечным резистором R5, антенной WA1, конденсатором СЗ и резистором R3. С неё через истоковый повторитель на полевом транзисторе VT1, усилитель на транзисторе VT2 и конденсатор С4 сигнал поступает на вход IN (вывод 3) микросхемы DA2. К выводу 2 этой микросхемы подключён конденсатор С8 фильтра фазового детектора системы ФАПЧ, от ёмкости которого зависит ширина её полосы захвата. Чем ёмкость больше, тем уже полоса.

На второй фазовый детектор микросхемы образцовое напряжение подаётся от генератора с фазовым сдвигом на 90 относительно поступающего на фазовый детектор ФАПЧ. Напряжение на выводе 1 микросхемы (выходе второго детектора), подаваемое на встроенный в неё компаратор напряжения, зависит от фазового сдвига между входным сигналом и сигналом генератора, вносимого рассмотренной выше цепью, которая включает в себя антенну WA1. С7 - конденсатор выходного фильтра фазового детектора. Резистор R8, включённый между выводами 1 и 8 микросхемы, создаёт в характеристике переключения компаратора гистерезис, необходимый для повышения помехоустойчивости. Цепь R7C6 - нагрузка выхода OUT, выполненного по схеме с открытым коллектором.

Далее по схеме ёмкостного датчика сигнал через диод VD2 поступает на цепь из резистора R9 и конденсатора С9 и на вход логического элемента DD1.1. Цепь R10C10 формирует импульс, блокирующий ложное срабатывание датчика в момент включения питания. С выхода элемента DD1.1 сиг- нал поступает через диод VD4 на цепь R11C11, обеспечивающую длительность выходного сигнала датчика не менее заданной, и на соединённые последовательно элементы DD1.2 и DD1.3, формирующие взаимно инверсные выходные сигналы датчика на линиях “Вых. 1” и “Вых. 2”. Высокий уровень сигнала на линии “Вых. 2” и включённый светодиод HL1 свидетельствуют, что в чувствительной зоне находится человек.

Узел питания ёмкостного датчика собран на интегральном стабилизаторе LM317LZ, выходное напряжение которого установлено равным 5 В с помощью резисторов R1 и R2. Входное напряжение может находиться в пределах 10…24 В. Диод VD1 защищает датчик от неправильной полярности источника этого напряжения.
Все детали датчика смонтированы на односторонней печатной плате из фольгированного стеклотекстолита, чертёж которой изображён на рис. 2. Резисторы R1 и R2 - для поверхностного монтажа. Их монтируют на плату со стороны печатных проводников. Подстроечный резистор R5 - СПЗ-19а или его импортный аналог.

Микросхему NJM567D можно заменить на NE567, KIA567, LM567 с различными буквенными индексами, означающими тип корпуса. Если он типа DIP8 (как у NJM567D) или круглый металлический, печатную плату корректировать не придётся. Аналог микросхемы К561ЛЕ5 - CD4001A. Транзистор КП303Е заменяется на BF245, КТ3102Е -на ВС547.
Антенна WA1 - отрезок одножильного изолированного провода сечением 0,5мм2 и длиной 0,3…1,5м. Короткая антенна обеспечивает меньшую чувствительность. Следует иметь в виду, что необходимая ёмкость конденсатора СЗ зависит от собственной ёмкости антенны, а значит, от её длины. Указанная на схеме ёмкость оптимальна для антенны длиной около метра. Чтобы работать с антенной длиной 0,3 м, ёмкость необходимо уменьшить до 30 пф.

Налаживать ёмкостный датчик следует, установив его и антенну там, где предполагается их эксплуатация. При этом следует учитывать, что на порог срабатывания влияет и расположение антенны относительно заземлённых предметов и проводов.
Первоначально движок подстроечного резистора R5 устанавливают в положение максимального сопротивления. После включения питания светодиод HL1 должен оставаться погашенным. В работоспособности датчика можно убедиться по включению этого светодиода в случае прикосновения к антенне рукой. Если ёмкость конденсатора СЗ выбрана правильно, то при переводе движка подстроечного резистора R5 в положение минимального сопротивления светодиод должен включиться и без касания антенны.

Убедившись в работоспособности схемы ёмкостного датчика, его налаживание продолжают по общеизвестной методике, добиваясь требуемого порога срабатывания плавным перемещением движка подстроечного резистора. Желательно делать это с помощью диэлектрической отвёртки, оказывающей минимальное влияние на фазосдвигающие цепи.
Оптимальная настройка соответствует включению светодиода при приближении человека к антенне метровой длины на расстояние 0,5 м, а выключение - при его удалении до 0,6 м. Укорочение антенны до 0,3 м уменьшит эти значения примерно на треть.

Следует заметить, что если ёмкость конденсатора СЗ слишком велика, светодиод HL1 может светиться и в крайнем левом положении движка, а при касании антенны рукой - гаснуть. Это объясняется тем, что устройство работает по балансному принципу и при необходимости можно отрегулировать его на срабатывание при удалении охраняемого объекта из чувствительной зоны.

ЛИТЕРАТУРА
1. Табунщиков В. Волшебное реле. - Моделист-конструктор, 1991, № 1, с. 23.
2. Нечаев И. Ёмкостное реле. - Радио, 1992, №9, с. 48-51.
3. Ершов М. Ёмкостный датчик. - Радио, 2004, №3, с. 41,42.
4. NJM567 Tone Decoder / Phase Locked Loop. www.pdf.datasheet.su/njr/njm567d.pdf
5. Соломеин В. Ёмкостное реле. -Радио, 2010, № 5, с. 38, 39.

В. ТУШНОВ, г. Луганск, Украина
“Радио” №12 2012г.

Емкостные реле в быту

Емкостный датчик в качестве противоугонного устройства

При несанкционированном проникновении злоумышленника в салон автомобиля срабатывает емкостное реле и разрывает контактную цепь, идущую к замку зажигания (Рис.1). Емкостное реле самоблокируется и включает реле времени, находящееся до этого в ждущем режиме. Реле времени начинает отсчет времени, находящийся в пределах 10...60 с, после чего контакты реле времени включают мощную многотональную звуковую сигнализацию. При желании владельца автомобиля контакты реле времени могут включать электрошоковое устройство, тогда угонщик будет подвержен слабому воздействию электрического тока силой 1...6 мА и напряжением 300....3000 В. Дверные замки автомобиля автоматически закрываются и самоблокируются. Может также включаться радиомаяк, расположенный внутри автомобиля. Эти дополнительные устройства могут быть установлены по желанию автовладельца.

Рис.1

Датчиком емкостного реле служит кусок металлической фольги размером 100x50 мм или же фольгированный текстолит аналогичных размеров. Датчик может быть расположен в салоне автомобиля под сидением водителя, или же выполнен в виде какой-либо декоративной панели, привлекающей угонщика, или, наоборот, спрятанной, и тем самым не заметной для глаз злоумышленника, но к которой угонщик обязательно должен прикоснуться.
Датчиков в салоне автомобиля может быть 1... 10 штук.
Приводится противоугонное устройство в действие микровыключателем, расположенным в салоне автомобиля, известным о месте его нахождения только владельцу транспортного средства.На принципиальной схеме устройства микровыключатель не указан.
Сопротивление катушки K1 от 1 кОм до 175 Ом; число витков катушки - 3400; ток срабатывания составляет 36 мA ток отпускания - 8 мА; напряжение питания - 12 В. Катушка колебательного контура L1 намотана на бумажном каркасе диаметром 8... 10 мм и содержит 26 витков провода ПЭВ-1 диаметром 0,3...0,4 мм, намотанных виток к витку в один слой. Отвод сделан от 7-го витка.

А.Гайдук, г. Борисов

Простое емкостное устройство

Устройство, схема которого показана на рис.2, работает на звуковых частотах. Для увеличения чувствительности здесь в контур генератора НЧ введен полевой транзистор, к затвору которого подключается датчик.


Рис.2

Генератор прямоугольных импульсов со звуковой частотой около 1000 Гц собран на элементах DD 1.1 и DD 1.2. В качестве выходного каскада используется элемент DD 1.3 той же микросхемы К155ЛА3, нагрузкой которого служит телефонный капсюль.

С целью дальнейшего увеличения чувствительности емкостного реле возможно увеличение количества элементов, введенных в RC - цепочку. Однако следует учитывать, что при пяти и больше логических элементах в схеме наладка не усложняется.

Обычное емкостное реле начинает работать сразу после включения. Требуется только подстроить резистор R 1 на пороговую чувствительность.

При отладке данного реле возможны два варианта его работы: срыв или, наоборот, возникновение генерации при введении емкости. Установка требуемого варианта осуществляется подбором переменного резистора R 1. При приближении руки к датчику Е1 подстройкой резистора R 1 добиваются, чтобы расстояние, с которого срабатывало бы емкостное реле, было около 10 - 20 см.

Для подключения исполнительных механизмов к емкостному реле сигнал с элемента DD 1.3 следует подать на электронное реле.

Крылов А.

Ярославская обл.

Емкостное реле для управления освещением

В часто посещаемых помещениях для экономии электроэнергии удобно применить емкостное реле для управления освещением. При входе в помещение, если необходимо включить свет, проходят вблизи емкостного датчика, который подает сигнал в емкостное реле, и лампа включается. Выходя из помещения, если нужно выключить свет, проходят вблизи емкостного датчика на выключение, и реле выключает лампу. В ждущем режиме устройство потребляет ток около 2 мА.

Принципиальная схема емкостного реле изображена на рис.3


Рис.3

Устройство по схеме подобно реле времени, у которого времязадающий узел заменен триггером на логических элементах DD1.1, DD1.2. При включении тумблера S1 через лампу HL1 будет протекать ток, если на базу транзистора VT1 с выхода элемента DD1.1 поступает напряжение высокого уровня. Транзистор VT1 при этом открыт, и тиристор VD6 открывается в начале каждого полупериода напряжения. Триггер переключается от емкостного тока утечки, при приближении человека на некоторое расстояние к одному из емкостных датчиков, если до этого он переключился от приближения к другому. При смене напряжения высокого уровня на базе транзистора VT1 на напряжение низкого уровня тиристор VD6 закроется, и лампа погаснет.

Емкостные датчики Е1 и Е2 представляют собой отрезки коаксиального кабеля (например, РК-100, ИКМ-2), со свободного конца которых на длину около 0.5 м снят экран. Изоляцию с центрального провода снимать не нужно. Край экрана необходимо изолировать. Датчики можно прикрепить к дверной раме. Длину неэкранированной части датчиков и сопротивление резисторов R5. R6 подбирают при налаживании устройства так, чтобы триггер надежно переключался при прохождении человека на расстоянии 5...10 см от датчика.

При налаживании устройства необходимо соблюдать меры предосторожности, так как элементы устройства находятся под напряжением сети.

С. Лобкович, г. Минск

Схема емкостного реле на микросхеме

Что такое емкостное реле? Это электронное реле, срабатывающее при изменении емкости между его датчиком и общим проводом. Чувствительным узлом большинства емкостных реле является генератор электрических колебаний довольно высокой частоты (сотни килогерц и выше). Когда параллельно контуру такого генератора подключается дополнительная емкость, то либо изменяется в определенных пределах частота генератора, либо его колебания срываются вовсе. В любом случае срабатывает пороговое устройство, соединенное с генератором, - оно включает звуковой или световой сигнализатор.

Емкостное реле нередко используют для охраны различных объектов. При приближении к объекту человека реле извещает об этом охрану. Кроме того, оно находит применение в устройствах автоматики.

Схема емкостного реле приведена на рис.4



Рис.4

Устройство собрано на одной интегральной цифровой микросхеме и не содержит намоточных деталей, без которых не обойтись при изготовлении устройств с высокочастотным генератором.

Работает емкостное реле так. Пока емкость между датчиком, подключаемым к гнезду XS 1, относительно общего провода (минус источника питания) мала, на резисторе R 2, а значит, на соединенном с ним входе элемента DD 1.3 формируются короткие импульсы положительной полярности, а на выходе элемента (вывод 4) - такие же импульсы отрицательной полярности. Иначе говоря, напряжение на выходе элемента большую часть времени имеет уровень логической 1, а в течении очень короткого промежутка - уровень логического 0. Конденсатор С5 медленно заряжается через резистор R 3, когда на выходе элемента уровень логической 1, и быстро разряжается через диод VD 1 при появлении уровня логического 0. Поскольку разрядный ток значительно превышает зарядный, напряжение на конденсаторе С5 имеет уровень логического 0, и элемент DD 1.4 закрыт для сигнала звуковой частоты.

При приближении к датчику руки его емкость относительно общего провода увеличится, амплитуда импульсов на резисторе R 2 уменьшится и станет меньше порога включения элемента DD 1.3. На выходе элемента DD 1.3 будет постоянно уровень логической 1, до этого уровня зарядится конденсатор С5. Элемент DD 1.4 начнет пропускать сигнал звуковой частоты, и в капсюле BF 1 раздастся звук.

Чувствительность емкостного реле можно изменять подстроечным конденсатором С3.

Датчик представляет собой металлическую сетку (или пластину) размерами примерно 200 х 200 мм, чтобы обеспечить сравнительно высокую чувствительность реле.

Проверяют и настраивают реле в такой последовательности. Одной рукой берутся за неизолированный конец «земляного» провода и, поворачивая ротор подстроечного конденсатора, устанавливают его в положение, при котором звукового сигнала нет. Теперь при приближение другой руки к датчику в капсюле должен раздаваться звуковой сигнал. Если его нет, можно увеличить емкость конденсатора С3. Если же сигнал вообще не исчезает, следует уменьшить емкость конденсатора С2 или вовсе изъять его из конструкции. Более точным подбором емкости подстроечного конденсатора можно добится срабатывания реле при поднесении руки к датчику на расстоянии более десяти сантиметров.

Если емкостное реле захотите использовать для включения мощной нагрузки, соберите схему на рис.5.


Рис.5

Теперь к элементу DD 1.4 подключен транзистор VT 1, коллекторная цепь которого соединена с управляющим электродом тиристора VS 1. Тиристор, а значит, и его нагрузка могут питаться либо постоянным, либо переменным током. В первом случае после «срабатывания» реле и последующего его «отпускания» (когда от датчика уберут руку) выключить тиристор удастся лишь кратковременным отключением питания его анодной цепи. Во втором варианте тиристор будет выключатся при закрывании транзистора.

Нечаев.И.

г. Курск

Емкостное реле на транзисторах

На рис.6 показана схема простого транзисторного емкостного реле.


Рис.6

Транзисторы VT 1 - VT 3 формируют усилитель электрического сигнала, возникшего в результате наводки от человеческого тела. Конденсатор С1, диоды D 2 и D 3 защищают реле от ложного срабатывания.

Сенсор представляет собой пластину из алюминия или меди размером примерно 10 см х 10 см. Транзисторы VT1, VT3 возможно заменить на КТ3102, КТ815.

При наладке данной схемы, следует соблюдать меры электробезопасности, так как все элементы конструкции находятся под напряжением электросети.

Приложение напряжения переменного тока к смежным проводникам способствует дистанционному накапливанию на них положительных и отрицательных зарядов. Они создают вариативное электромагнитное поле, чувствительное ко многим внешним факторам, в первую очередь, к расстоянию между проводниками. Это свойство может использоваться для создания соответствующих емкостных датчиков, которые в состоянии управлять работой различных систем контроля и слежения.

Приложения напряжения разного знака, согласно закону Ампера, вызывает перемещение проводников, на которых находятся электрические частицы. При этом возникает переменный ток, который может быть обнаружен. Величина протекающего тока определяется емкостью, которая, в свою очередь, зависит от площади проводников и расстояния между ними. Более крупные и более близкие объекты вызывают больший ток, чем более мелкие и более отдаленные.

Емкость определяется следующими параметрами:

  • Характером не проводящей ток среды-диэлектрика, располагающейся между проводниками.
  • Размерами проводников.
  • Силой тока.

Пара таких поверхностей образует обкладки простейшего конденсатора, емкость которого прямо пропорциональна площади и диэлектрической проницаемости рабочей среды, и обратно пропорциональна расстоянию между обкладками. При постоянстве размеров обкладок и состава рабочей среды между ними любое изменение емкости будет являться результатом изменения расстояния между двумя объектами: зондом (датчиком) и отслеживаемой целью. Достаточно только преобразовать изменения емкости в значения сфокусированного электрического напряжения, которое будет управлять дальнейшими действиями прибора. Данные устройства, таким образом, предназначены для определения изменяющегося расстояния между объектами, а также для уточнения характера и качества поверхности измеряемых изделий.

Принцип работы емкостного датчика

Конструктивно такой прибор включает в себя:

  • Источник формирования эталонного напряжения.
  • Первичную цепь – зонд, поверхность и размеры которого определяются целями измерений.
  • Вторичную цепь, формирующую необходимый электрический сигнал.
  • Защитную цепь, обеспечивающую стабильность показаний датчика независимо от внешних возмущающих факторов.
  • Электронный усилитель, драйвер которого формирует сильный управляющий сигнал на исполнительные элементы, и обеспечивает точность срабатывания.

Емкостные датчики подразделяются на одно- и многоканальные. В последнем случае устройство может включать в себя несколько вышеописанных схем с разной формой зондов.

Драйвер электроники может быть настроен как ведущий или ведомый. В первом варианте он обеспечивает синхронизацию управляющих сигналов, поэтому используется преимущественно в многоканальных системах. Все приборы являются сенсорными, реагирующими исключительно на бесконтактные параметры.

Основными характеристиками рассматриваемых устройств считаются:

  • Размеры и характер цели – объекта зондирования. В частности, создаваемое ею электрическое поле должно иметь форму конуса, для которого габаритные размеры должны минимум на 30% превышать соответствующие размеры первичной цепи;
  • Диапазон измерений. Максимальный зазор, при котором показания устройства дают требуемую точность, составляют около 40% от полезной площади первичной цепи;
  • Точность измерений. Калибровка показаний обычно уменьшает диапазон, но повышает точность. Поэтому, чем меньше датчик по размерам, тем ближе он должен быть установлен к контролируемому объекту.

Характеристики датчиков не зависят от материала объекта, а также его толщины

Как конденсатор превращается в датчик

В данном случае причина и следствие меняются местами. Когда на проводник подается напряжение, электрическое поле образуется у каждой поверхности. В емкостном датчике измерительное напряжение подается на чувствительную зону зонда, причём для точных измерений электрическое поле от зондируемой области должно содержаться именно в пространстве между зондом и целью.

В отличие от обычного конденсатора, при работе емкостных датчиков электрическое поле может распространяться на другие предметы (или на отдельные их области). Результатом станет то, что система будет распознавать такое составное поле как несколько целей. Чтобы этого не произошло, задняя и боковые стороны чувствительной области окружают другим проводником, который поддерживается под тем же напряжением, что и сама чувствительная область.

При подаче эталонного напряжения питания, отдельная цепь подает точно такое же напряжение на защиту датчика. При отсутствии разницы в значениях напряжений между зоной чувствительности и защитной зоной, электрическое поле между ними отсутствует. Таким образом, исходный сигнал может исходить только от незащищенного фронта первичной цепи.

В отличие от конденсатора, на действие емкостного датчика будет влиять плотность материала объекта, поскольку при этом нарушается однородность создаваемого электрического поля.

Проблемы измерения

Для объектов сложной конфигурации достижение требующейся точности возможно при соблюдении ряда условий. Например, при многоканальном зондировании напряжение возбуждения для каждого зонда должно быть синхронизировано, иначе зонды будут мешать друг другу: один датчик попытается увеличить электрическое поле, в то время как другой будет стремиться уменьшить его, тем самым давая ложные показания. Поэтому существенным ограничивающим условием является требование, чтобы измерения проводились в тех же условиях, в которых был откалиброван датчик на предприятии-изготовителе. Если оценивать сигнал по изменению расстояния между зондом и целью, то все остальные параметры должны иметь постоянные значения.

Указанные сложности преодолеваются с помощью следующих приёмов:

  • Оптимизации размеров измеряемого объекта: чем меньше цель, тем больше вероятность распространения чувствительности поля по сторонам, в результате чего ошибка измерения увеличивается.
  • Проведения калибровки только по мишени с плоскими размерами.
  • Снижением скорости сканирования цели, в результате чего изменение характера поверхности не будет сказываться на итоговых показаниях.
  • Во время калибровки зонд должен располагаться эквидистантно поверхности цели (параллельно – для плоских поверхностей); это важно для датчиков повышенной чувствительности.
  • Состояние внешней среды: большинство емкостных датчиков сенсорного типа устойчиво работают в температурном диапазоне 22…35 0 С: в этом случае погрешности минимал
    ьны, и не превышают 0,5 % от полной измерительной шкалы.

Тем не менее, есть проблемы, которые устранить невозможно. К их числу относится фактор теплового расширения/сужения материала, как датчика, так и контролируемого объекта. Второй фактор – электрический шум датчика, который вызывается дрейфом напряжения драйвера устройства.

Блок-диаграмма работы

Не являясь прямонаправленным, емкостной датчик измеряет некоторую емкость от объектов, которые постоянно присутствуют в окружающей среде. Поэтому неизвестные объекты обнаруживаются им как увеличение этой фоновой емкости. Она значительно больше, чем емкость объекта, и постоянно изменяется по величине. Поэтому рассматриваемые устройства используются для обнаружения изменений в окружающей среде, а не для обнаружения абсолютного присутствия или отсутствия неизвестного объекта.

При приближении цели к зонду величина электрического заряда или емкости изменяется, что и фиксируется электронной частью датчика. Результат может выводиться на экран или сенсорную панель.

Для производства измерения прибор подключается к печатной плате с сенсорным контроллером. Сенсоры оснащаются управляющими кнопками. Которыми можно включать в работу несколько зондов одновременно.

Сенсорные экраны используют датчики с электродами, расположенными в ряды и столбцы. Они находятся либо на противоположных сторонах основной панели, либо на отдельных панелях, которые разделены между собой диэлектрическими элементами. Контроллер циклически переключается между различными зондами, чтобы сначала определить, к какой строке касаются (направление Y), а затем к какому столбцу (направление X). Зонды часто изготавливаются из прозрачного пластика, что повышает информативность результата измерения.

Использование LC-фильтров

Специализированный аналоговый интерфейс преобразует сигнал от емкостного датчика в цифровое значение, пригодное для дальнейшей обработки. При этом периодически измеряется выходной сигнал датчика и генерируется сигнал возбуждения для зарядки пластины датчика. Частота дискретизации на выходе датчика относительно низкая — менее 500 выборок в секунду, но разрешение аналого-цифрового преобразования необходимо для захвата небольших различий в емкости.

В емкостном измерительном устройстве ступенчатая форма волны возбуждения заряжает электрод датчика. Впоследствии заряд передается в цепь и измеряется аналого-цифровым преобразователем.

Одной из проблем емкостного зондирования (как уже указывалось) является наличие постороннего шума. Эффективным способом повышения помехоустойчивости является модификация датчика путем подключения чувствительного к частоте компонента. В дополнение к элементу переменного конденсатора к датчику добавляются дополнительный конденсатор и индуктор для формирования резонансного контура. Узкополосный отклик позволяет ему подавлять электрический шум. При простоте LC- контура, его наличие обеспечивает ряд эксплуатационных преимуществ. Во-первых, благодаря присущим узкополосным характеристикам LC-резонатор обеспечивает отличную невосприимчивость к электромагнитным помехам. Во-вторых, если известен диапазон частот, где существует шум, то смещение рабочей частоты датчика может отфильтровать эти источники шума без использования внешних схем.

LC-фильтры чаще применяют в многоканальных датчиках

Сферы применения

Данные устройства используются в следующих целях:

  • Для обнаружения пластмасс и других изоляторов.
  • В системах сигнализации, при установлении факта перемещений по контролируемой территории.
  • Как компонент охранных устройств автомобилей.
  • Для определения чистоты поверхности материалов после механической обработки.
  • С целью определения уровня жидких или газообразных рабочих сред в закрытых резервуарах.
  • При установке систем автоматического включения/выключения светильников.

Во всех случаях емкостные датчики подлежат обязательной калибровке в заводских или иных специализированных условиях.

Схемы для изготовления своими руками

Для организации сенсорного управления емкостной датчик легко создать на основе, конденсатора и пары резисторов. При касании к проводам, происходит накапливание электрического заряда, регулируя величину которого, можно изменять время зарядки/разрядки. Такую схему можно применить для управления настольной лампой или иным светильником. В схеме должен присутствовать электронный компаратор, который будет сравнивать время зарядки конденсатора с эталонным (пороговым) значением, и выдавать соответствующий управляющий сигнал.

Электронные схемы с сенсорным контролем более интерактивны для пользователя, чем традиционные, поэтому могут эффективно применяться с целью переключения питания. Емкость конденсатора определяет уровень чувствительности: при повышении емкости чувствительность увеличивается, но для питания устройства потребуется больше мощности и меньшее время срабатывания. Для индикации можно применить обычный светодиод.

Несколько схем датчиков

В январе 2007 года издательство "Наука и Техника" выпустило книгу автора А.П.Кашкарова "Электронные датчики". На этой страничке хочу познакомить Вас с некоторыми из конструкций.

Очень хочется предупредить - данные схемы я НЕ собирал - работоспособность их полностью зависит от "порядочности" г-на Кашкарова!

В начале рассмотрим схемы с применением микросхемы К561ТЛ1. Первая схема - емкостное реле:

Микросхема К561ТЛ1 (зарубежный аналог CD4093B) - одна из самых популярных цифровых микросхем этой серии. Микросхема содержит 4 элемента 2И-НЕ с передаточной характеристикой триггера Шмита (имеет определенный гистерезис).

Данное устройство имеет высокую чувствительность, что позволяет использовать его в охранных устройствах, а также в устройствах, предупреждающих о небезопасном нахождении человека в опасной зоне (например в распиловочных станках). Принцип устройства основан на изменении емкости между штырем антенны (используется стандартная автомобильная антенна) и полом. По утверждению автора, данная схема срабатывает при приближении человека среднего размера на расстояние около 1,5 метров. В качестве нагрузки транзистора может использоваться, например, электромагнитное реле с током срабатывания не более 50 миллиампер, которое своими контактами включает исполнительное устройство (сирену и проч.). Конденсатор С1 служит для снижения вероятности срабатывания устройства от помех.

Следующее устройство - датчик влажности:

Особенностью схемы является применение в качестве датчика переменного конденсатора С2 типа 1КЛВМ-1 с воздушным диэлектриком. Если воздух сухой - сопротивление между пластинами конденсатора составляет более 10 Гигаом, а уже при небольшой влажности сопротивление уменьшается. По сути этот конденсатор представляет собой высокоомный резистор с изменяющимся в зависимости от внешних условий абсорбированной атмосферной влажности сопротивлением. При сухом климате сопротивление датчика велико, и на выходе элемента D1/1 присутствует низкий уровень напряжения. при увеличении влажности сопротивление датчика уменьшается, возникает генерация импульсов, на выходе схемы присутствуют короткие импульсы. При увеличении влажности частота генерации импульсов увеличивается. В определенный момент влажности генератор на элементе D1/1 превращается в генератор импульсов. на выходе устройства появляется непрерывный сигнал.

Схема сенсорного датчика показана ниже:

Принцип действия этого устройства заключается в реагировании на "наводки" в теле человека или животного от различных электрических устройств. Чувствительность устройства очень велика - оно реагирует даже на прикосновение к пластине Е1 человека в матерчатых перчатках. При первом прикосновении устройство включается, при втором - выключается. Конденсатор С1 служит для защиты от помех и его в отдельном случае может и не быть...

Следующее устройство - индикатор влажности почвы. Это устройство может быть использовано, например, для автоматизации полива теплицы:


Устройство, на мой взгляд, весьма оригинально. Датчиком служит катушка индуктивности L1, закопанная в почву на глубину 35-50 сантиметров.
Транзистор Т2 и катушка индуктивности совместно с конденсаторами С5 и С6 образуют автогенератор на частоту около 16 килогерц. При сухой почве амплитуда импульсов на коллекторе транзистора VT2 равна 3 вольтам. Увеличение влажности почвы приводит к понижению амплитуды этих импульсов. Реле включено. При некотором значении влажности генерация срывается, что приводит к выключению реле. Реле своими контактами выключает, например, насос или электромагнитный вентиль в цепи полива.
О деталях: Самой ответственной частью схемы является катушка. Эта катушка наматывается на отрезок пластмассовой трубы, диаметром 100 , длиной 300 миллиметров и содержит 250 витков, провода ПЭВ, диаметром 1 миллиметр. Намотка - виток к витку. Снаружи обмотка изолируется двумя - тремя слоями ПХВ изоляционной ленты. Транзисторы можно заменить на КТ315. Конденсаторы - типа КМ. Диоды VD1-VD3 - типа КД521 - КД522.
Вся конструкция питается от стабилизированного источника, напряжением 12 вольт. Ток потребления схемой равен (в режимах "влажно-сухо") 20-50 миллиампер.
Электронная схема собирается в небольшой герметичной коробке. Для возможности регулировки напротив движка R5 следует предусмотреть отверстие, которое после настройки также герметично закрывается. Для питания использован маломощный трансформатор с выпрямителем и стабилизатором на КР142ЕН8Б. Реле должно нормально срабатывать при токе не более 30 миллиампер и напряжении 8-10 вольт. Для примера - можно применить РЭС10, паспорт 303. Для питания насоса контакты этого реле непригодны. В качестве промежуточного реле можно использовать автомобильное. Контакты такого реле выдерживают ток не менее 10 ампер. Можно применить и реле типа КУЦ от цветных телевизоров. Оба из рекомендованных реле имеют обмотку на 12 вольт и их можно включать до микросхемы стабилизатора (после выпрямителя и сглаживающего конденсатора), либо после стабилизатора (но тогда микросхему стабилизатора следует установить на небольшой теплоотвод). Также на корпусе следует установить два герметичных разъема (например типа РША). Один разъем используется для подключения сети и исполнительного устройства (насос), другой - для подключения катушки.
Настройка схемы сводится к регулированию чувствительности устройства при помощи переменного резистора R5. Окончательная настройка производится на месте работы устройства более точной подстройкой резистора. Следует иметь в виду, что данное устройство несколько изменяет порог включения при изменении температуры почвы (но это не очень существенно, поскольку на глубине в 35-50 сантиметров температура почвы изменяется незначительно).
Весной у владельцев овощных ям и гаражей появляется еще одна забота - талые воды. Если вовремя не откачать воду - овощи приходят в негодность... Можно процедуру откачки воды поручить автоматике. Схема получается простенькой, а сэкономит Вам множество времени и нервов (эта схема не из книжки! ) :



Схема автоматической "водооткачки" работает на принципе электропроводности воды. Основным элементом контроля уровня является блок из трех пластин из нержавеющей стали. Пластины 1 и 2 имеют одинаковую длину, пластина 3 - датчик верхнего уровня воды. Пока уровень воды ниже уровня 3 пластины - на входе логического элемента D1 уровень логической еденицы, на выходе элемента уровень логического нуля - транзистор заперт, реле обесточено. При увеличении уровня воды датчик 3 через воду соединяется с общим проводом схемы (пластина 1) - на входе элемента уровень логического нуля, на выходе элемента - уровень логической еденицы - транзистор открывается - реле своими контактами включает насос. Одновременно с насосом на вход схемы подключается пластина 2 датчика. Эта пластина является датчиком нижнего уровня воды. Насос будет работать до тех пор, пока уровень воды не опустится ниже уровня пластин. После этого насос отключается и схема переходит в дежурный режим...
В схеме можно применить практически любые логические элементы КМОП технологии серий 176, 561,564. Реле РЭС22 используется на напряжение срабатывания 10-12 вольт. Данное реле имеет довольно мощные контакты, что позволяет непосредственно управлять насосом типа "Водолей" мощностью до 250 ватт. Для увеличения надежности работы полезно свободные группы контактов реле (их всего четыре) соединить параллельно и параллельно контактам реле включить цепочку из последовательно соединенных резистора на 100 ом (мощностью не менее 2 ватт) и конденсатора на 0,1 микрофарады (с рабочим напряжением не менее 400 вольт). Эта цепочка служит для уменьшения искрения на контактах в моменты коммутации. Если у Вас насос большей мощности - придется применить дополнительное промежуточное реле с контактами большей мощности (например пускатель ПМЕ 100 - 200...), обмотку которого (обычно на 220 вольт) коммутировать при помощи реле РЭС22. В этом случае обычно хватает одной пары контактов и искрогасящую цепочку параллельно контактам реле можно не ставить. Трансформатор питания использован на 12 вольт (был готовый) с мощностью около 5 ватт. При самостоятельном изготовлении следует учитывать тот факт что трансформатор будет работать непрерывно, поэтому лучше увеличить (для надежности) на 15-20 процентов количество витков первичной и вторичной обмоток по сравнению с расчетными. Использовать Китайские трансформаторы я бы Вам не советовал - при работе они очень сильно греются - может произойти пожар, либо трансформатор попросту сгорит, а Вы будете уверены в надежности работы схемы и перестанете наведываться в гараж... Результат - овощи испорчены...
Данное устройство эксплуатируется автором на протяжении 5 лет и показало высокую надежность. Соседи по гаражному кооперативу тоже высоко оценили этот "девайс" - уровень воды в их ямах также значительно понизился...

Можно подобное устройство изготовить и без микросхемы:



Реле в данной конструкции используется типа КУЦ (от цветных телевизоров). Этот тип реле имеет две пары замыкающих контактов. Одна пара используется для переключения пластин датчика, другая - для управления насосом. Следует иметь в виду, что реле типа КУЦ нежелательно использовать совместно с микросхемой - могут появиться ложные срабатывания от наводок!

Схема каких либо особенностей не имеет. Возможно, во время настройки придется подобрать резистор R2 в цепи смещения транзистора VT2, добиваясь четкого срабатывания реле при контакте датчика с водой.


На оставшихся элементах микросхемы можно собрать еще одно полезное устройство - имитатор охранной сигнализации:



Устройство предназначено для имитации системы охраны гаража. Для обеспечения бесперебойности работы схема снабжена автономным питанием из батареи аккумуляторов с напряжением 5 вольт. Для экономичности устройства в целом - служит фоторезистор R2. В темное время суток на фоторезистор свет не попадает - сопротивление его велико - на входе элемента присутствует напряжение логической еденицы - генератор вырабатывает импульсы. Светодиод - "моргает". В светлое время суток сопротивление фоторезистора уменьшается, что приводит к уменьшению напряжения на выводе 10 микросхемы до уровня логического нуля - генератор перестает возбуждаться. Частота импульсов зависит от номиналов конденсатора С1 и резистора R2. В качестве резервного источника использована батарея из 4 аккумуляторов типа КНГ-1,5. Емкости аккумуляторной батареи хватает для непрерывной работы схемы примерно на 20-30 суток (при пропадании сетевого напряжения).
Настройка сводится к подбору с помощью сопротивления резистора R1 уровня чувствительности схемы. Резистором R2 можно изменять частоту генератора.
Данное устройство относится к так называемому "пассивному" устройству защиты, но оно реально работает! Эксплуатация "моргасика" в течении более 5 лет показала его довольно высокую эффективность. За это время не было зафиксировано ни одной попытки вскрытия гаража (у соседей такие случаи бывали). Понятно, что серьезного жулика подобным устройством не напугаешь - (но где они, серьезные жулики - так, одна шпана...).

Емкостной датчик – это один из типов бесконтактных датчиков, принцип работы которого основан на изменении диэлектрической проницаемости среды между двух обкладок конденсатора. Одной обкладкой служит сенсорный датчик схемы в виде металлической пластины или провода, а второй – электропроводящее вещество, например, металл, вода или тело человека.

При разработке системы автоматического включения подачи воды в унитаз для биде возникла необходимость применения емкостного датчика присутствия и выключателя, обладающих высокой надежностью, устойчивостью к изменению внешней температуры, влажности, пыли и питающему напряжению. Хотелось также исключить необходимость прикосновения человека с органами управления системы. Предъявляемые требования могли обеспечить только схемы сенсорных датчиков, работающих на принципе изменения емкости. Готовой схемы удовлетворяющей необходимым требованиям не нашел, пришлось разработать самостоятельно.

Получился универсальный емкостной сенсорный датчик, который не требует настройки и реагирует на приближающиеся электропроводящие предметы, в том числе и человека, на расстояние до 5 см. Область применения предлагаемого сенсорного датчика не ограничена. Его можно применять, например, для включения освещения, систем охранной сигнализации, определения уровня воды и в многих других случаях.

Электрические принципиальные схемы

Для управления подачей воды в биде унитаза понадобилось два емкостных сенсорных датчика. Один датчик нужно было установить непосредственно на унитазе, он должен был выдавать сигнал логического нуля при присутствии человека, а при отсутствии сигнал логической единицы. Второй емкостной датчик должен был служить включателем воды и находиться в одном из двух логических состояний.

При поднесении к сенсору руки датчик должен был менять логическое состояние на выходе – из исходного единичного состояния переходить в состояние логического нуля, при повторном прикосновении руки из нулевого состояния переходить в состояние логической единицы. И так до бесконечности, пока на сенсорный включатель поступает разрешающий сигнал логического нуля с сенсорного датчика присутствия.

Схема емкостного сенсорного датчика

Основой схемы емкостного сенсорного датчика присутствия является задающий генератор прямоугольных импульсов, выполненный по классической схеме на двух логических элементах микросхемы D1.1 и D1.2. Частота генератора определяется номиналами элементов R1 и C1 и выбрана около 50 кГц. Значение частоты на работу емкостного датчика практически не влияет. Я менял частоту от 20 до 200 кГц и влияния на работу устройства визуально не заметил.

С 4 вывода микросхемы D1.2 сигнал прямоугольной формы через резистор R2 поступает на входы 8, 9 микросхемы D1.3 и через переменный резистор R3 на входы 12,13 D1.4. На вход микросхемы D1.3 сигнал поступает с небольшим изменением наклона фронта импульсов из-за установленного датчика, представляющего собой кусок провода или металлическую пластину. На входе D1.4, из за конденсатора С2, фронт изменяется на время, необходимое для его перезаряда. Благодаря наличию подстроечного резистора R3, есть возможность фронты импульса на входе D1.4, выставить равным фронту импульса на входе D1.3.

Если приблизить к антенне (сенсорному датчику) руку или металлический предмет, то емкость на входе микросхемы DD1.3 увеличится и фронт поступающего импульса задержатся во времени, относительно фронта импульса, поступающего на вход DD1.4. чтобы «уловить» эту задержку про инвертированные импульсы подаются на микросхему DD2.1, представляющую собой D триггер, работающий следующим образом. По положительному фронту импульса, поступающего на вход микросхемы C, на выход триггера передается сигнал, который в тот момент был на входе D. Следовательно, если сигнал на входе D не изменяется, поступающие импульсы на счетный вход C не оказывают влияния на уровень выходного сигнала. Это свойство D триггера и позволило сделать простой емкостной сенсорный датчик.

Когда емкость антенны, из за приближения к ней тела человека, на входе DD1.3 увеличивается, импульс задерживается и это фиксирует D триггер, изменяя свое выходное состояние. Светодиод HL1 служит для индикации наличия питающего напряжения, а HL2 для индикации приближения к сенсорному датчику.

Схема сенсорного включателя

Схему емкостного сенсорного датчика можно использовать и для работы сенсорного включателя, но с небольшой доработкой, так как ему необходимо не только реагировать на приближение тела человека, но и оставаться в установившемся состоянии после удаления руки. Для решения этой задачи пришлось к выходу сенсорного датчика добавить еще один D триггер, DD2.2, включенный по схеме делителя на два.

Схема емкостного датчика была немного доработана. Для исключения ложных срабатываний, так как человек может подносить и удалять руку медленно, из-за наличия помех датчик может выдавать на счетный вход D триггера несколько импульсов, нарушая необходимый алгоритм работы включателя. Поэтому была добавлена RC цепочка из элементов R4 и C5, которая на небольшое время блокировала возможность переключение D триггера.


Триггер DD2.2 работает так же, как и DD2.1, но сигнал на вход D подается не с других элементов, а с инверсного выхода DD2.2. В результате по положительному фронту импульса, приходящего на вход С сигнал на входе D изменяется на противоположный. Например, если в исходном состоянии на выводе 13 был логический ноль, то поднеся руку к сенсору один раз, триггер переключится и на выводе 13 установится логическая единица. При следующем воздействии на сенсор, на выводе 13 опять установится логический ноль.

Для блокировки включателя при отсутствии человека на унитазе, с сенсора на вход R (установка нуля на выходе триггера вне зависимости от сигналов на всех остальных его входах) микросхемы DD2.2 подается логическая единица. На выходе емкостного выключателя устанавливается логический ноль, который по жгуту подается на базу ключевого транзистора включения электромагнитного клапана в Блоке питания и коммутации.

Резистор R6, при отсутствии блокирующего сигнала с емкостного датчика в случае его отказа или обрыва управляющего провода, блокирует триггер по входу R, тем самым исключает возможность самопроизвольной подачи воды в биде. Конденсатор С6 защищает вход R от помех. Светодиод HL3 служит для индикации подачи воды в биде.

Конструкция и детали емкостных сенсорных датчиков

Когда я начал разрабатывать сенсорную систему подачи воды в биде, то наиболее трудной задачей мне казалась разработка емкостного датчика присутствия. Обусловлено это было рядом ограничений по установке и эксплуатации. Не хотелось, чтобы датчик был механически связан с крышкой унитаза, так как ее периодически надо снимать для мойки, и не мешал при санитарной обработке самого унитаза. Поэтому и выбрал в качестве реагирующего элемента емкость.

Сенсорного датчика присутствия

По выше опубликованной схеме сделал опытный образец. Детали емкостного датчика собраны на печатной плате, плата размещена в пластмассовой коробке и закрывается крышкой. Для подключения антенны в корпусе установлен одноштырьковый разъем, для подачи питающего напряжения и сигнала установлен четырех контактный разъем РШ2Н. Соединена печатная плата с разъемами пайкой медными проводниками в фторопластовой изоляции.

Сенсорный емкостной датчик собран на двух микросхемах КР561 серии, ЛЕ5 и ТМ2. Вместо микросхемы КР561ЛЕ5 можно применить КР561ЛА7. Подойдут и микросхемы 176 серии, импортные аналоги. Резисторы, конденсаторы и светодиоды подойдут любого типа. Конденсатор С2, для стабильной работы емкостного датчика при эксплуатации в условиях больших колебаниях температуры окружающей среды нужно брать с малым ТКЕ.

Установлен датчик под площадкой унитаза, на которой установлен сливной бачок в месте, куда в случае протечки из бачка вода попасть не сможет. К унитазу корпус датчика приклеен с помощью двустороннего скотча.


Антенный датчик емкостного сенсора представляет собой отрезок медного многожильного провода длинной 35 см в изоляции из фторопласта, приклеенного с помощью прозрачного скотча к внешней стенке чаши унитаза на сантиметр ниже плоскости очка. На фотографии сенсор хорошо виден.

Для настройки чувствительности сенсорного датчика необходимо после его установки на унитаз, изменяя сопротивление подстроечного резистора R3 добиться, чтобы светодиод HL2 погас. Далее положить руку на крышку унитаза над местом нахождения сенсора, светодиод HL2 должен загораться, если руку убрать, потухнуть. Так как бедро человека по массе больше руки, то при эксплуатации сенсорный датчик, после такой настройки, будет работать гарантировано.

Конструкция и детали емкостного сенсорного включателя

Схема емкостного сенсорного включателя имеет больше деталей и для их размещения понадобился корпус большего размера, да и по эстетическим соображениям, внешний вид корпуса, в котором был размещен сенсорный датчик присутствия не очень подходил для установки на видном месте. Внимание на себя обратила настенная розетка rj-11 для подключения телефона. По размерам она подходила и имела хороший внешний вид. Удалив из розетки все лишнее, разместил в ней печатную плату емкостного сенсорного выключателя.


Для закрепления печатной платы в основании корпуса была установлена короткая стойка и к ней с помощью винта прикручена печатная плата с деталями сенсорного выключателя.


Датчик емкостного сенсора сделал, приклеив ко дну крышки розетки клеем «Момент» лист латуни, предварительно вырезав в них окошко для светодиодов. При закрывании крышки, пружина (взята от кремниевой зажигалки) соприкасается с латунным листом и таким образом обеспечивается электрический контакт между схемой и сенсором.


Крепится емкостной сенсорный включатель на стену с помощью одного самореза. Для этого в корпусе предусмотрено отверстие. Далее устанавливается плата, разъем и закрепляется защелками крышка.


Настройка емкостного выключателя практически не отличается от настройки сенсорного датчика присутствия, описанного выше. Для настройки нужно подать питающее напряжение и резистором отрегулировать, чтобы светодиод HL2 загорался, когда к датчику подносится рука, и гас, при ее удалении. Далее нужно активировать сенсорный датчик и поднести и удалить руку к сенсору выключателя. Должен мигнуть светодиод HL2 и загореться красный светодиод HL3. При удалении руки красный светодиод должен продолжать светиться. При повторном поднесении руки или удалении тела от датчика, светодиод HL3 должен погаснуть, то есть выключить подачу воды в биде.

Универсальная печатная плата

Представленные выше емкостные датчики собраны на печатных платах, несколько отличающихся от печатной платы приведенной ниже на фотографии. Это связано с объединением обеих печатных плат в одну универсальную. Если собирать сенсорный включатель, то необходимо только перерезать дорожку под номером 2. Если собирать сенсорный датчик присутствия, то удаляется дорожка номер 1 и не все элементы устанавливаются.


Не устанавливаются элементы, необходимые для работы сенсорного включателя, но мешающие работе датчика присутствия, R4, С5, R6, С6, HL2 и R4. Вместо R4 и С6 запаиваются проволочные перемычки. Цепочку R4, С5 можно оставить. Она не будет влиять на работу.

Ниже приведен рисунок печатной платы для накатки при использовании термического метода нанесения на фольгу дорожек.

Достаточно распечатать рисунок на глянцевой бумаге или кальке и шаблон готов для изготовления печатной платы.

Безотказная работа емкостных датчиков для сенсорной системы управления подачи воды в биде подтверждена на практике в течении трех лет постоянной эксплуатации. Сбоев в работе не зафиксировано.

Однако хочу заметить, что схема чувствительна к мощным импульсным помехам. Мне приходило письмо о помощи в настройке. Оказалось, что во время отладки схемы рядом находился паяльник с тиристорным регулятором температуры. После выключения паяльника схема заработала.

Еще был такой случай. Емкостной датчик был установлен в светильник, который подключался в одну розетку с холодильником. При его включении свет включался и при повторном выключался. Вопрос был решен подключением светильника в другую розетку.

Приходило письмо об успешном применении описанной схемы емкостного датчика для регулировки уровня воды в накопительном баке из пластика. В нижней и верхней части было приклеено силиконом по датчику, которые управляли включением и выключением электрического насоса.

Статьи по теме: