Рациональное уравнение. Исчерпывающий гид (2019)

Класс 9.

Тема урока: «Дробные рациональные уравнения»

Тип урока: комбинированный.

Цели:

1. Образовательные: дать определение «дробно-рациональные уравнения», показать способы решения таких уравнений.

2. Развивающие: развитие умений и навыков решать примеры с данным типом уравнений, находить корни дробно-рациональных уравнений.

3. Воспитывающие: воспитывать внимание, внимательность, активность, аккуратность; уважительное отношение к матери.

Задачи: заинтересовать учеников предметом, показать важность умения решать разные уравнения и задачи.

Материально- техническое оснащение:

Мультимедиа проектор, экран, презентация к уроку «Дробные рациональные уравнения»

Время: 45 минут

План урока.

Этапы урока

Деятельность учителя

Деятельность ученика

I . Организационный момент. (1 мин.)

Приветствует учащихся, проверка их готовность к уроку.

Приветствуют учителя.

II . Сообщение темы и целей урока. (2 мин)

Сообщает тему и цель урока.

Записывают тему в тетрадь.

III . Повторение пройденной темы. (2 мин)

Задает вопросы на повторение пройденной темы.

Отвечают на вопросы.

IV . Изучение нового материала. (15 мин.)

Демонстрирует слайды, сопровождает рассказом.

Слушает, задает целенаправленные вопросы в роли рядового участника

Обсуждают предмет с учителем и получают при необходимости информацию, устанавливают цели, планируют траекторию работы.

Вырабатывают план действий, формируют задачи.

Выполняют поиск информации, сбор данных и фактов истории, первично исследуют полученную информацию, решают промежуточные задачи.

V . Физкультминутка. (1 мин.)

Выполняет физкультминутку

Выполняют физкультминутку

VI . Закрепление материала. (20 мин.)

Решение задач, предлагает вопросы на закрепление.

Решают задачи в тетрадях, у доски, задают вопросы учителю.

VIII . Подведение итогов урока.(4мин)

Оценивает работу учащихся.

Говорят о том, чему научились на уроке. Убирают рабочие места.

ХОД УРОКА

I. Рефлексия начала урока (музыка; презентация о матери).

Проверка готовности к уроку.

II. Сообщение новой темы, цели и задачи :

Учитель: Здравствуйте! Посмотрите, пожалуйста, друг на друга и от всей души улыбнитесь.

Сегодняшний урок я бы хотела начать со слов М. Горького:

Слайд 1
Без солнца не цветут цветы,

без любви нет счастья,

без женщин нет любви,

без матери нет ни поэта, ни героя.

Вся гордость мира – от матерей.
(М. Горький)

Учитель:

– Что может быть на свете священнее имени матери! …

Человек, еще не сделавший ни одного шага по земле и только – только начинающий «лопотать», неуверенно и старательно складывает по слогам «мама» и, почувствовав свою удачу, смеется, счастливый …

Когда ребенок вскрикнет первый раз

И мать его коснется осторожно,

Ее любовь… О, как она тревожна.

Тревожна каждый день и час.

Ребята, скоро День Матери, поэтому сегодняшний урок я хочу связать с этой темой. Мы с вами на прошлых уроках научились решать, находить корни различных уравнений, сегодня мы продолжим знакомиться с одним из видов уравнений – это дробные рациональные уравнения, выясним важность уравнений, и вспомним, как решать задачи с помощью уравнений. Постараемся не подвести свою маму, решать будем внимательно и не отвлекаясь, готовиться к ГИА. Мать каждого из вас хочет, чтобы её ребёнок был самым лучшим. Итак, сегодня у нас урок изучения новой темы (слайд 2).

III. Повторение пройденной темы.

1. Проверка домашнего задания (слайд 3).

№925(а, б), №935(а, б), №936.

2. Устно повторяем (слайд 3 ,4,5,6 ).

Повторим:

Как называется данное уравнение? Сколько корней имеет данное уравнение?

IV . Изучение нового материала. (слайд 7).

Учитель: Уравнение y (x ) =0 называют дробным рациональным уравнением, если выражение y (x ) является дробным (т.е. содержит деление на выражение с переменными).

Для решения рационального уравнения его необходимо преобразовать в линейное или квадратное уравнение, решить это уравнение и отбросить те корни, которые не входят в ОДЗ (область допустимых значений) исходного рационального уравнения.

Откройте учебник на стр.78 и прочитаем правило. С этой темой вы уже работали в 8 классе.

Алгоритм решения дробных рациональных уравнений: ( слайд 8).

    (приложение 1)

Учитель: А теперь вместе со мной давайте решим дробно-рациональное уравнение по алгоритму (слайд 9).

VI . Самостоятельная работа (слайд 10).

Твое письмо. Твои родные строки.

Последний материнский твой наказ:

«Законы жизни мудры и жестоки.

Живи. Трудись. Не порть слезами глаз.

Моя любовь с тобой всегда. Навеки.

Ты жизнь люби. Она ведь хороша.

Людей люби. И помни – в человеке

что главное? Высокая душа».

Давайте и мы с вами постараемся, чтобы у нас была «высокая душа». А для этого надо уважать и любить родителей, конечно, стараться учиться и хорошо сдать гос. экзамены. Займёмся подготовкой к аттестации.

Самостоятельная работа. Самоконтроль – 4 варианта. Проверка вашей честности. Работа выполняется в тетрадях. В ходе выполнения работы учащиеся определяют для себя алгоритм решения дробных рациональных уравнений. На каждой парте – таблица – напоминание «Алгоритм решения дробных рациональных уравнений». Приложение 1.

В а р и а н т 1.

В а р и а н т 2.

В а р и а н т 3.

В а р и а н т 4.

О т в е т ы:

I вариант:
,
(
;
).

II вариант:
(
;
)

III вариант:
(

)

IV вариант:
,
(
;
).

VII . Физкультминутка (слайд 11).

Учитель: А теперь разминка.

Повернитесь ко мне. Я проговариваю предложения. Если оно справедливо – вы встаёте, если нет – то остаётесь сидеть.

1) 5х = 7 имеет единственный корень.

2) 0х = 0 не имеет корней.
3) Если Д 0, то квадратное уравнение имеет два корня.
4) Если Д
5) Количество корней не больше степени уравнения.

VIII . Закрепление и повторение материала. (слайд 12).

Учитель. Мужчины перед своими любимыми хотят выглядеть только мужественными, только сильными, только несгибаемыми. Возможно, это и делает их мужчинами. И только перед родной матерью не боятся они обнажить свои слабости и неудачи, признаться в ошибках и потерях, потому что, как бы далеко они не ушли в своем возрасте и развитии, перед нею они и седые – все равно дети. А уж она понимает сердцем, что бедному да обиженному, прежде всего, всех нужнее – мать. Сегодня у всех будут хорошие оценки, поэтому обиженных, я думаю, не будет.

    Решаем задачу № 942 из учебника. (Алгебра – 9 класс/ Ю.Н. Макарычев) (слайд 13).

1-я автомашина

x -20 км/ч

ч

2-я автомашина

x км/ч

ч

    Решить пример на доске. (слайд 14).

№289(а)

VII . Подведение итогов урока .

Что нового вы узнали на уроке?

    Чему вы научились на уроке?

2. Алгоритм решения дробных рациональных уравнений:

Учитель оценивает работу учащихся и выставляет оценки.

Учитель. Приобретая черты символа и выполняя огромную общественную миссию, мать никогда не теряла привычные человеческие черты, оставаясь радушной хозяйкой и умной собеседницей, старательной работницей и прирожденной песенницей, широкой в застолье и мужественной в горе, открытой в радости и сдержанной в печали, и всегда доброй, понимающей и женственной! Я очень хочу, чтобы мечты ваших родителей осуществились, пусть вы будете достойными людьми (слайд 15).

VIII . Домашнее задание . №943, №940(а, б), №290 (слайд 16).

Приложение 1.

Алгоритм решения дробных рациональных уравнений:

    Найти допустимые значения дробей, входящих в уравнение.

    Найти общий знаменатель дробей, входящих в уравнение.

    Умножить обе части уравнения на общий знаменатель.

    Решить получившееся уравнение.

    Исключить корни, не входящие в допустимые значения дробей уравнения.

Наименьший общий знаменатель используется для упрощения данного уравнения. Этот метод применяется в том случае, когда вы не можете записать данное уравнение с одним рациональным выражением на каждой стороне уравнения (и воспользоваться методом умножения крест-накрест). Этот метод используется, когда вам дано рациональное уравнение с 3 или более дробями (в случае двух дробей лучше применить умножение крест-накрест).

  • Найдите наименьший общий знаменатель дробей (или наименьшее общее кратное). НОЗ – это наименьшее число, которое делится нацело на каждый знаменатель.

    • Иногда НОЗ – очевидное число. Например, если дано уравнение: х/3 + 1/2 = (3x +1)/6, то очевидно, что наименьшим общим кратным для чисел 3, 2 и 6 будет 6.
    • Если НОЗ не очевиден, выпишите кратные самого большого знаменателя и найдите среди них такой, который будет кратным и для других знаменателей. Зачастую НОЗ можно найти, просто перемножив два знаменателя. Например, если дано уравнение x/8 + 2/6 = (x - 3)/9, то НОЗ = 8*9 = 72.
    • Если один или несколько знаменателей содержат переменную, то процесс несколько усложняется (но не становится невозможным). В этом случае НОЗ представляет собой выражение (содержащее переменную), которое делится на каждый знаменатель. Например, в уравнении 5/(х-1) = 1/х + 2/(3x) НОЗ = 3x(х-1), потому что это выражение делится на каждый знаменатель: 3x(х-1)/(х-1) = 3x; 3x(х-1)/3х = (х-1); 3x(х-1)/х = 3(х-1).
  • Умножьте и числитель, и знаменатель каждой дроби на число, равное результату деления НОЗ на соответствующий знаменатель каждой дроби. Так как вы умножаете и числитель, и знаменатель на одно и тоже число, то фактически вы умножаете дробь на 1 (например, 2/2 = 1 или 3/3 = 1).

    • Таким образом, в нашем примере умножьте х/3 на 2/2, чтобы получить 2x/6, и 1/2 умножьте на 3/3, чтобы получить 3/6 (дробь 3x +1/6 умножать не надо, так как ее знаменатель равен 6).
    • Действуйте аналогично в случае, когда переменная находится в знаменателе. В нашем втором примере НОЗ = 3x(x-1), поэтому 5/(x-1) умножьте на (3x)/(3x) и получите 5(3x)/(3x)(x-1); 1/x умножьте на 3(x-1)/3(x-1) и получите 3(x-1)/3x(x-1); 2/(3x) умножьте на (x-1)/(x-1) и получите 2(x-1)/3x(x-1).
  • Найдите х. Теперь, когда вы привели дроби к общему знаменателю, вы можете избавиться от знаменателя. Для этого умножьте каждую сторону уравнения на общий знаменатель. Затем решите полученное уравнение, то есть найдите «х». Для этого обособьте переменную на одной из сторон уравнения.

    • В нашем примере: 2x/6 + 3/6 = (3x +1)/6. Вы можете сложить 2 дроби с одинаковым знаменателем, поэтому запишите уравнение как: (2x+3)/6=(3x+1)/6. Умножьте обе части уравнения на 6 и избавьтесь от знаменателей: 2x+3 = 3x +1. Решите и получите х = 2.
    • В нашем втором примере (с переменной в знаменателе) уравнение имеет вид (после приведения к общему знаменателю): 5(3x)/(3x)(x-1) = 3(x-1)/3x(x-1) + 2(x-1)/3x(x-1). Умножив обе стороны уравнения на НОЗ, вы избавитесь от знаменателя и получите: 5(3x) = 3(х-1) + 2(х-1), или 15x = 3x - 3 + 2x -2, или 15х = х - 5. Решите и получите: х = -5/14.
  • Целое выражение - это математическое выражение, составленное из чисел и буквенных переменных с помощью действий сложения, вычитания и умножения. Также к целым относятся выражения, которые имеют в своем составе деление на какое-либо число, отличное от нуля.

    Понятие дробного рационального выражения

    Дробное выражение - это математическое выражение, которое помимо действий сложения, вычитания и умножения, выполненных с числами и буквенными переменными, а также деления на число не равное нулю, содержит также деление на выражения с буквенными переменными.

    Рациональные выражения - это все целые и дробные выражения. Рациональные уравнения - это уравнения, у которых левая и правые части являются рациональными выражениями. Если в рациональном уравнении левая и правая части будут являться целыми выражениями, то такое рациональное уравнение называется целым.

    Если в рациональном уравнении левая или правая части будут являться дробными выражениями, то такое рациональное уравнение называется дробным.

    Примеры дробных рациональных выражений

    1. x-3/x = -6*x+19

    2. (x-4)/(2*x+5) = (x+7)/(x-2)

    3. (x-3)/(x-5) + 1/x = (x+5)/(x*(x-5))

    Схема решения дробного рационального уравнения

    1. Найти общий знаменатель всех дробей, которые входят в уравнение.

    2. Умножить обе части уравнения на общий знаменатель.

    3. Решить полученное целое уравнение.

    4. Произвести проверку корней, и исключить те из них, которые обращают в нуль общий знаменатель.

    Так как мы решаем дробные рациональные уравнения, то в знаменателях дробей будут переменные. Значит, будут они и в общем знаменателе. А во втором пункте алгоритма мы умножаем на общий знаменатель, то могут появится посторонние корни. При которых общий знаменатель будет равен нулю, а значит и умножение на него будет бессмысленным. Поэтому в конце обязательно делать проверку полученных корней.

    Рассмотрим пример:

    Решить дробное рациональное уравнение: (x-3)/(x-5) + 1/x = (x+5)/(x*(x-5)).

    Будем придерживаться общей схемы: найдем сначала общий знаменатель всех дробей. Получим x*(x-5).

    Умножим каждую дробь на общий знаменатель и запишем полученное целое уравнение.

    (x-3)/(x-5) * (x*(x-5))= x*(x+3);
    1/x * (x*(x-5)) = (x-5);
    (x+5)/(x*(x-5)) * (x*(x-5)) = (x+5);
    x*(x+3) + (x-5) = (x+5);

    Упростим полученное уравнение. Получим:

    x^2+3*x + x-5 - x - 5 =0;
    x^2+3*x-10=0;

    Получили простое приведенное квадратное уравнение. Решаем его любым из известных способов, получаем корни x=-2 и x=5.

    Теперь производим проверку полученных решений:

    Подставляем числа -2 и 5 в общий знаменатель. При х=-2 общий знаменатель x*(x-5) не обращается в нуль, -2*(-2-5)=14. Значит число -2 будет являться корнем исходного дробного рационального уравнения.

    При х=5 общий знаменатель x*(x-5) становится равным нулю. Следовательно, это число не является корнем исходного дробного рационального уравнения, так как там будет деление на нуль.

    В этой статье я покажу вам алгоритмы решения семи типов рациональных уравнений , которые с помощью замены переменных сводятся к квадратным. В большинстве случаев преобразования, которые приводят к замене, весьма нетривиальны, и самостоятельно о них догадаться достаточно трудно.

    Для каждого типа уравнений я объясню, как в нем делать замену переменной, а затем в соответствующем видеоуроке покажу подробное решение.

    У вас есть возможность продолжить решение уравнений самостоятельно, а затем сверить свое решение с видеоуроком.

    Итак, начнем.

    1 . (x-1)(x-7)(x-4)(x+2)=40

    Заметим, что в левой части уравнения стоит произведение четырех скобок, а в правой - число.

    1. Сгруппируем скобки по две так, чтобы сумма свободных членов была одинаковой.

    2. Перемножим их.

    3. Введем замену переменной.

    В нашем уравнении сгруппируем первую скобку с третьей, а вторую с четвертой,так как (-1)+(-4)=(-7)+2:

    В этом месте замена переменной становится очевидной:

    Получаем уравнение

    Ответ:

    2 .

    Уравнение этого типа похоже на предыдущее с одним отличием: в правой части уравнения стоит произведение числа на . И решается оно совсем по-другому:

    1. Группируем скобки по две так, чтобы произведение свободных членов было одинаковым.

    2. Перемножаем каждую пару скобок.

    3. Из каждого множителя выносим за скобку х.

    4. Делим обе части уравнения на .

    5. Вводим замену переменной.

    В этом уравнении сгруппируем первую скобку с четвертой, а вторую с третьей, так как :

    Заметим, что в каждой скобке коэффициент при и свободный член одинаковые. Вынесем из каждой скобки множитель :

    Так как х=0 не является корнем исходного уравнения, разделим обе части уравнения на . Получим:

    Получим уравнение:

    Ответ:

    3 .

    Заметим, что в знаменателях обоих дробей стоят квадратные трехчлены, у которых старший коэффициент и свободный член одинаковые. Вынесем, как и в уравнении второго типа х за скобку. Получим:

    Разделим числитель и знаменатель каждой дроби на х:

    Теперь можем ввести замену переменной:

    Получим уравнение относительно переменной t:

    4 .

    Заметим, что коэффициенты уравнения симметричны относительно центрального. Такое уравнение называется возвратным .

    Чтобы его решить,

    1. Разделим обе части уравнения на (Мы можем это сделать, так как х=0 не является корнем уравнения.) Получим:

    2. Сгруппируем слагаемые таким образом:

    3. В каждой группе вынесем за скобку общий множитель:

    4. Введем замену:

    5. Выразим через t выражение :

    Отсюда

    Получим уравнение относительно t:

    Ответ:

    5. Однородные уравнения.

    Уравнения, имеющие структуру однородного, могут встретиться при решении показательных, логарифмических и тригонометрических уравнений, поэтому ее нужно уметь распознавать.

    Однородные уравнения имеют такую структуру:

    В этом равенстве А, В и С - числа, а квадратиком и кружочком обозначены одинаковые выражения. То есть в левой части однородного уравнения стоит сумма одночленов, имеющих одинаковую степень (в данном случае степень одночленов равна 2), и свободный член отсутствует.

    Чтобы решить однородное уравнение, разделим обе части на

    Внимание! При делении правой и левой части уравнения на выражение, содержащее неизвестное, можно потерять корни. Поэтому необходимо проверить, не являются ли корни того выражения, на которое мы делим обе части уравнения, корнями исходного уравнения.

    Пойдем первым путем. Получим уравнение:

    Теперь мы вводим замену переменной:

    Упростим выражение и получим биквадратное уравнение относительно t:

    Ответ: или

    7 .

    Это уравнение имеет такую структуру:

    Чтобы его решить, нужно в левой части уравнения выделить полный квадрат.

    Чтобы выделить полный квдарат, нужно прибавить или вычесть удовоенное произведение. Тогда мы получим квадрат суммы ли разности. Для удачной замены переменной это имеет определяющее значение.

    Начнем с нахождения удвоенного произведения. Именно оно будет ключиком для замены переменной. В нашем уравнении удвоенное произведение равно

    Теперь прикинем, что нам удобнее иметь - квадрат суммы или разности. Рассмотрим, для начала сумму выражений:

    Отлично! это выражении в точности равно удвоенному произведению. Тогда, чтобы в скобках получить квадрат суммы, нужно прибавить и вычесть удвоенное произведение:

    Проще говоря, это уравнения, в которых есть хотя бы одна с переменной в знаменателе.

    Например:

    \(\frac{9x^2-1}{3x}\) \(=0\)
    \(\frac{1}{2x}+\frac{x}{x+1}=\frac{1}{2}\)
    \(\frac{6}{x+1}=\frac{x^2-5x}{x+1}\)


    Пример не дробно-рациональных уравнений:

    \(\frac{9x^2-1}{3}\) \(=0\)
    \(\frac{x}{2}\) \(+8x^2=6\)

    Как решаются дробно-рациональные уравнения?

    Главное, что надо запомнить про дробно-рациональные уравнения – в них надо писать . И после нахождения корней – обязательно проверять их на допустимость. Иначе могут появиться посторонние корни, и все решение будет считаться неверным.


    Алгоритм решения дробно-рационального уравнения:

      Выпишите и «решите» ОДЗ.

      Умножьте каждый член уравнения на общий знаменатель и сократите полученные дроби. Знаменатели при этом пропадут.

      Запишите уравнение, не раскрывая скобок.

      Решите полученное уравнение.

      Проверьте найденные корни с ОДЗ.

      Запишите в ответ корни, которые прошли проверку в п.7.

    Алгоритм не заучивайте, 3-5 решенных уравнений – и он запомнится сам.


    Пример . Решите дробно-рациональное уравнение \(\frac{x}{x-2} - \frac{7}{x+2}=\frac{8}{x^2-4}\)

    Решение:

    Ответ: \(3\).


    Пример . Найдите корни дробно-рационального уравнения \(=0\)

    Решение:

    \(\frac{x}{x+2} + \frac{x+1}{x+5}-\frac{7-x}{x^2+7x+10}\) \(=0\)

    ОДЗ: \(x+2≠0⇔x≠-2\)
    \(x+5≠0 ⇔x≠-5\)
    \(x^2+7x+10≠0\)
    \(D=49-4 \cdot 10=9\)
    \(x_1≠\frac{-7+3}{2}=-2\)
    \(x_2≠\frac{-7-3}{2}=-5\)

    Записываем и «решаем» ОДЗ.

    Раскладываем \(x^2+7x+10\) на по формуле: \(ax^2+bx+c=a(x-x_1)(x-x_2)\).
    Благо \(x_1\) и \(x_2\) мы уже нашли.

    \(\frac{x}{x+2} + \frac{x+1}{x+5}-\frac{7-x}{(x+2)(x+5)}\) \(=0\)

    Очевидно, общий знаменатель дробей: \((x+2)(x+5)\). Умножаем на него всё уравнение.

    \(\frac{x(x+2)(x+5)}{x+2} + \frac{(x+1)(x+2)(x+5)}{x+5}-\)
    \(-\frac{(7-x)(x+2)(x+5)}{(x+2)(x+5)}\) \(=0\)

    Сокращаем дроби

    \(x(x+5)+(x+1)(x+2)-7+x=0\)

    Раскрываем скобки

    \(x^2+5x+x^2+3x+2-7+x=0\)


    Приводим подобные слагаемые

    \(2x^2+9x-5=0\)


    Находим корни уравнения

    \(x_1=-5;\) \(x_2=\frac{1}{2}.\)


    Один из корней не подходи под ОДЗ, поэтому в ответ записываем только второй корень.

    Ответ: \(\frac{1}{2}\).

    Статьи по теме: