Как написать ионное уравнение. Составление уравнений реакций ионного обмена

SO 4 2- + Ba 2+ → BaSO 4 ↓

Алгоритм:

Подбираем к каждому иону противоион, пользуясь таблицей растворимости, чтобы получилась нейтральная молекула – сильный электролит.

1. Na 2 SO 4 + BaCl 2 → 2 NaCl + BaSO 4

2. BaI 2 + K 2 SO 4 → 2KI + BaSO 4

3. Ba(NO 33) 2 + (NH 4) 2 SO 4 → 2 NH 4 NO 3 + BaSO 4

Ионные полные уравнения:

1. 2 Na + + SO 4 2- + Ba 2- + 2 Cl‾ → 2 Na + + 2 Cl‾ + BaSO 4

2. Ba 2+ + 2 I‾ + 2 K + + SO 4 2- → 2 K + + 2 I‾ + BaSO 4

3. Ba 2+ + 2 NO 3 ‾ + 2 NH 4 + + SO 4 2- → 2 NH 4 + + 2 NO 3 ‾ + BaSO 4

Вывод: к одному краткому уравнению можно составить множество молекулярных уравнений.

ТЕМА 9. ГИДРОЛИЗ СОЛЕЙ

Гидролиз солей – ионообменная реакция соли с водой, приводя-

от греч. «гидро» щая к образованию слабого электролита (либо

Вода, «лизис» - слабого основания, либо слабой кислоты) и изме-

разложение нению среды раствора.

Любую соль можно представить как продукт взаимодействия основания с

кислотой.


Сильное Слабое Сильная Слабая может быть образована

1. LiOH NH 4 OH или 1. Н 2 SO 4 все осталь- 1. Сильным основанием и

2. NaOH NH 3 · H 2 O 2. HNO 3 ные слабой кислотой.

3. KOH все осталь - 3. HCl 2. Слабым основанием и

4. RbOH ные 4. HBr сильной кислотой.

5. CsOH 5. HI 3. Слабым основанием и

6. FrOH 6. HClO 4 слабой кислотой.

7. Ca(OH) 2 4. Сильным основанием и

8. Sr(OH) 2 сильной кислотой.

9. Ва(ОН) 2


СОСТАВЛЕНИЕ ИОННО-МОЛЕКУЛЯРНЫХ УРАВНЕНИЙ ГИДРОЛИЗА.

РЕШЕНИЕ ТИПОВЫХ ЗАДАЧ ПО ТЕМЕ: «ГИДРОЛИЗ СОЛЕЙ»

Задача № 1.

Составить ионно-молекулярные уравнения гидролиза соли Na 2 CO 3 .

Алгоритм Пример

1. Составить уравнение диссо-

циации соли на ионы. Na 2 CO 3 → 2Na + + CO 3 2- Na + →NaOН - сильное

2. Проанализировать, каким CO 3 2- →H 2 CO 3 - слабая

Основанием и какой кисло-

той образована соль. продукт

3. Сделать вывод, какой сла- гидролиза

бый электролит – продукт

гидролиза.

4. Написать уравнения гидроли-

I ступень.

А) составить краткое ионное I. а) CO 3 2- + H + │OH ‾ HCO 3 ‾ + OH ‾

уравнение, определить среду

раствора. pH>7, щелочная среда

Б) составить полное ионное б) 2Na + +CO 3 2- +HOH Na + +HCO 3 ‾ +Na + +OH ‾

уравнение, зная, что молеку-

ла – электронейтральная ча-

стица, подобрать к каждому

иону противоион.

В) составить молекулярное в) Na 2 CO 3 + HOH NaHCO 3 + NaOH

уравнение гидролиза.

Гидролиз протекает ступенчато, если слабое основание – многокислотное, а слабая кислота – многоосновная.

II ступень (см. алгоритм выше NaHCO 3 Na + + HCO 3 ‾

1, 2, 3, 4а, 4б, 4в). II. а) HCO 3 ‾ + HOH H 2 CO 3 + OH ‾

Б) Na + + HCO 3 ‾ H 2 CO 3 + Na + + OH ‾

В) NaHCO 3 + HOH H 2 CO 3 + NaOH

Вывод: соли, образованные сильными основаниями и слабыми кислотами подвергаются частичному гидролизу (по аниону), среда раствора щелочная (рН>7).

Задача № 2.

Составить ионно-молекулярные уравнения гидролиза соли ZnCl 2 .

ZnCl 2 → Zn 2+ + 2 Cl ‾ Zn 2+ → Zn(OH) 2 – слабое основание

Cl ‾ → HCl – сильная кислота

I. а) Zn 2+ + H + /OH ‾ ZnOH + + H + среда кислая, рН<7

Б) Zn 2+ + 2 Cl ‾ + HOH ZnOH + + Cl ‾ + H + + Cl ‾

В) ZnCl 2 + HOH ZnOHCl + HCl

II. а) ZnOH + + HOH Zn(OH) 2 + H +

Б) ZnOH + + Cl ‾ + HOH Zn(OH) 2 + H + + Cl ‾

В) ZnOHCl + HOH Zn(OH) 2 + HCl

Вывод: соли, образованные слабыми основаниями и сильными кислотами подвергаются частичному гидролизу (по катиону), среда раствора кислая.

Задача № 3.

Составить ионно-молекулярные уравнения гидролиза соли Al 2 S 3 .

Al 2 S 3 → 2 Al 3+ + 3 S 2- Al 3+ → Al(OH) 3 – слабое основание

S 2- → H 2 S – слабая кислота

а), б) 2 Al 3+ + 3 S 2- + 6 HOH → 2 Al(OH) 3 ↓ + 3 H 2 S

в) Al 2 S 3 + 6 H 2 O → 2 Al(OH) 3 + 3 H 2S S

Вывод: соли, образованные слабыми основаниями и слабыми кислотами подвергаются полному (необратимому) гидролизу, среда раствора близка к нейтральной.

Инструкция

Прежде чем приступать к ионных уравнений, необходимо усвоить некоторые правила. Нерастворимые в воде, газообразные и малодиссоциирующие вещества (например, вода) на ионы не распадаются, а значит, записывайте их в молекулярном виде. Также сюда относятся слабые электролиты, такие как H2S, H2CO3, H2SO3, NH4OH. Растворимость соединений можно узнать по таблице растворимости, которая является разрешенным справочным материалом на всех видах контроля. Там же указаны все заряды, которые присущи катионам и анионам. Для полноценного выполнения задания необходимо написать молекулярное, полное и ионное сокращенное уравнения .

Пример № 1. реакцию нейтрализации между серной кислотой и гидроксидом калия, рассмотрите ее с точки зрения ТЭД (теории электролитической диссоциации). Сначала запишите уравнение реакции в молекулярном виде и .H2SO4 + 2KOH = K2SO4 + 2H2OПроанализируйте полученные вещества на их растворимость и диссоциацию. Все соединения растворимы в воде, а значит на ионы. Исключение только вода, которая на ионы не распадается, следовательно, останется в молекулярном виде.Напишите ионное полное уравнение, найдите одинаковые ионы в левой и правой части и . Чтобы сократить одинаковые ионы, зачеркните их.2H+ +SO4 2- +2K+ +2OH- = 2K+ +SO4 2- + 2H2OВ результате получится ионное сокращенное уравнение:2H+ +2OH- = 2H2OКоэффициенты в виде двоек также можно сократить:H+ +OH- = H2O

Пример № 2. Напишите реакцию обмена между хлоридом меди и , рассмотрите ее с точки зрения ТЭД. Запишите уравнение реакции в молекулярном виде и расставьте коэффициенты. В результате, образовавшийся гидроксид меди выпал в осадок цвета. CuCl2 + 2NaOH = Cu(OH) 2↓ +2NaClПроанализируйте все вещества на их растворимость в воде – растворимы все, кроме гидроксида меди, который на ионы не будет. Запишите ионное полное уравнение, подчеркните и сократите одинаковые ионы:Cu2+ +2Cl- + 2Na+ +2OH- = Cu(OH) 2↓+2Na+ +2Cl-Остается ионное сокращенное уравнение:Cu2+ +2OH- = Cu(OH) 2↓

Пример № 3. Напишите реакцию обмена между карбонатом натрия и соляной кислотой, рассмотрите ее с точки зрения ТЭД. Запишите уравнение реакции в молекулярном виде и расставьте коэффициенты. В образуется хлорид натрия и выделяется газообразное вещество СО2 (углекислый газ или оксид углерода (IV)). Оно образуется за счет разложения слабой , распадающейся на оксид и воду. Na2CO3 + 2HCl = 2NaCl + CO2+H2OПроанализируйте все вещества на их растворимость в воде и диссоциацию. Углекислый газ уходит из системы, как газообразное соединение, вода – это малодиссоциирующее вещество. Все остальные вещества на ионы распадаются. Запишите ионное полное уравнение, подчеркните и сократите одинаковые ионы:2Na+ +СO3 2- +2H+ +2Cl- =2Na+ +2Cl- +CO2+H2OОстается ионное сокращенное уравнение:СO3 2- +2H+ =CO2+H2O

Видео по теме

Обратите внимание

Чтобы правильно определить количество ионов, нужно коэффициент, стоящий перед формулой, умножить на индекс.

Полезный совет

В уравнениях реакций обязательно проверяйте коэффициенты.

Источники:

  • как составить уравнения на реакции ионного обмена

Уравнение реакции - условная запись химического процесса, при котором одни вещества превращаются в другие с изменением свойств. Для записи химических реакций используют формулы веществ и знания о химических свойствах соединений.

Инструкция

Правильно напишите формулы, в соответствии с их . Например, оксид алюминия Al₂O₃, индекс 3 от алюминия (соответствует его степени окисления в этом соединении) поставьте возле кислорода, а индекс 2 (степень окисления кислорода) возле алюминия.
Если степень окисления +1 или -1, то индекс не ставится. К примеру, вам нужно записать формулу . Нитрат – кислотный остаток азотной кислоты (-NO₃, с.о. -1), аммоний (-NH₄, с.о. +1). Таким образом нитрата аммония - NH₄ NO₃. Иногда степень окисления указывается в названии соединения. Оксид серы (VI) - SO₃, оксид кремния (II) SiO. Некоторые (газы) записываются с индексом 2: Cl₂, J₂, F₂, O₂, H₂ и т.д.

Необходимо знать, какие вещества вступают в реакцию. Видимые реакции: выделение газа, изменение окраски и выпадение осадка. Очень часто реакции проходят без видимых изменений.
Пример 1: реакция нейтрализации
H₂SO₄ + 2 NaOH → Na₂SO₄ + 2 H₂O
Гидроксид натрия реагирует с серной кислотой с образованием растворимой соли сульфата натрия и воды. Ион натрия отщепляется и соединяется с кислотным , замещая водород. Реакция проходит без внешних признаков.
Пример 2: йодоформная проба
С₂H₅OH + 4 J₂ + 6 NaOH→CHJ₃↓ + 5 NaJ + HCOONa + 5 H₂O
Реакция идет в несколько этапов. Конечный результат – выпадение кристаллов йодоформа желтого цвета (качественная реакция на ).
Пример 3:
Zn + K₂SO₄ ≠
Реакция невозможна, т.к. в ряду напряжений металлов цинк стоит после калия и не может вытеснять его из соединений.

Закон сохранения массы гласит: масса веществ, вступивших в реакцию, равна массе образовавшихся веществ. Грамотная запись химической реакции – половина . Необходимо расставить коэффициенты. Начните уравнивать с тех соединений, в формулах которых присутствуют большие индексы.
K₂Cr₂O₇ + 14 HCl → 2 CrCl₃ + 2 KCl + 3 Cl₂ + 7 H₂O
Расставлять коэффициенты начните с бихромата калия, т.к. в его формуле содержится наибольший индекс (7).
Такая точность в записи необходима для расчета массы, объема, концентрации, выделившейся энергии и других величин. Будьте внимательны. Запомните наиболее часто встречающиеся формулы и оснований, а также кислотные остатки.

Источники:

  • уравнение по химии

Работу с формулами и уравнениями в офисном приложении Word, входящем в пакет Microsoft Office, обеспечивает специальная утилита «Редактор формул», являющаяся частью программы Math Type.

Инструкция

Нажмите кнопку «Пуск» для вызова главного меню системы и перейдите в пункт «Все программы».

Укажите пункт Microsoft Office и запустите приложение Word.

Вызовите контекстное меню панели инструментов кликом правой кнопки мыши и укажите пункт «Настройка».

Достаточно часто школьникам и студентам приходится составлять т. н. ионные уравнения реакций. В частности, именно этой теме посвящена задача 31, предлагаемая на ЕГЭ по химии. В данной статье мы подробно обсудим алгоритм написания кратких и полных ионных уравнений, разберем много примеров разного уровня сложности.

Зачем нужны ионные уравнения

Напомню, что при растворении многих веществ в воде (и не только в воде!) происходит процесс диссоциации - вещества распадаются на ионы. Например, молекулы HCl в водной среде диссоциируют на катионы водорода (H + , точнее, H 3 O +) и анионы хлора (Cl -). Бромид натрия (NaBr) находится в водном растворе не в виде молекул, а в виде гидратированных ионов Na + и Br - (кстати, в твердом бромиде натрия тоже присутствуют ионы).

Записывая "обычные" (молекулярные) уравнения, мы не учитываем, что в реакцию вступают не молекулы, а ионы. Вот, например, как выглядит уравнение реакции между соляной кислотой и гидроксидом натрия:

HCl + NaOH = NaCl + H 2 O. (1)

Разумеется, эта схема не совсем верно описывает процесс. Как мы уже сказали, в водном растворе практически нет молекул HCl, а есть ионы H + и Cl - . Так же обстоят дела и с NaOH. Правильнее было бы записать следующее:

H + + Cl - + Na + + OH - = Na + + Cl - + H 2 O. (2)

Это и есть полное ионное уравнение . Вместо "виртуальных" молекул мы видим частицы, которые реально присутствуют в растворе (катионы и анионы). Не будем пока останавливаться на вопросе, почему H 2 O мы записали в молекулярной форме. Чуть позже это будет объяснено. Как видите, нет ничего сложного: мы заменили молекулы ионами, которые образуются при их диссоциации.

Впрочем, даже полное ионное уравнение не является безупречным. Действительно, присмотритесь повнимательнее: и в левой, и в правой частях уравнения (2) присутствуют одинаковые частицы - катионы Na + и анионы Cl - . В процессе реакции эти ионы не изменяются. Зачем тогда они вообще нужны? Уберем их и получим краткое ионное уравнение:

H + + OH - = H 2 O. (3)

Как видите, все сводится к взаимодействию ионов H + и OH - c образованием воды (реакция нейтрализации).

Все, полное и краткое ионные уравнения записаны. Если бы мы решали задачу 31 на ЕГЭ по химии, то получили бы за нее максимальную оценку - 2 балла.


Итак, еще раз о терминологии:

  • HCl + NaOH = NaCl + H 2 O - молекулярное уравнение ("обычное" уравнения, схематично отражающее суть реакции);
  • H + + Cl - + Na + + OH - = Na + + Cl - + H 2 O - полное ионное уравнение (видны реальные частицы, находящиеся в растворе);
  • H + + OH - = H 2 O - краткое ионное уравнение (мы убрали весь "мусор" - частицы, которые не участвуют в процессе).

Алгоритм написания ионных уравнений

  1. Составляем молекулярное уравнение реакции.
  2. Все частицы, диссоциирующие в растворе в ощутимой степени, записываем в виде ионов; вещества, не склонные к диссоциации, оставляем "в виде молекул".
  3. Убираем из двух частей уравнения т. н. ионы-наблюдатели, т. е. частицы, которые не участвуют в процессе.
  4. Проверяем коэффициенты и получаем окончательный ответ - краткое ионное уравнение.

Пример 1 . Составьте полное и краткое ионные уравнения, описывающие взаимодействие водных растворов хлорида бария и сульфата натрия.

Решение . Будем действовать в соответствии с предложенным алгоритмом. Составим сначала молекулярное уравнение. Хлорид бария и сульфат натрия - это две соли. Заглянем в раздел справочника "Свойства неорганических соединений" . Видим, что соли могут взаимодействовать друг с другом, если в ходе реакции образуется осадок. Проверим:

Упражнение 2 . Дополните уравнения следующих реакций:

  1. KOH + H 2 SO 4 =
  2. H 3 PO 4 + Na 2 O=
  3. Ba(OH) 2 + CO 2 =
  4. NaOH + CuBr 2 =
  5. K 2 S + Hg(NO 3) 2 =
  6. Zn + FeCl 2 =

Упражнение 3 . Напишите молекулярные уравнения реакций (в водном растворе) между: а) карбонатом натрия и азотной кислотой, б) хлоридом никеля (II) и гидроксидом натрия, в) ортофосфорной кислотой и гидроксидом кальция, г) нитратом серебра и хлоридом калия, д) оксидом фосфора (V) и гидроксидом калия.

Искренне надеюсь, что у вас не возникло проблем с выполнением этих трех заданий. Если это не так, необходимо вернуться к теме "Химические свойства основных классов неорганических соединений".

Как превратить молекулярное уравнение в полное ионное уравнение

Начинается самое интересное. Мы должны понять, какие вещества следует записывать в виде ионов, а какие - оставить в "молекулярной форме". Придется запомнить следующее.

В виде ионов записывают:

  • растворимые соли (подчеркиваю, только соли хорошо растворимые в воде);
  • щелочи (напомню, что щелочами называют растворимые в воде основания, но не NH 4 OH);
  • сильные кислоты (H 2 SO 4 , HNO 3 , HCl, HBr, HI, HClO 4 , HClO 3 , H 2 SeO 4 , ...).

Как видите, запомнить этот список совсем несложно: в него входят сильные кислоты и основания и все растворимые соли. Кстати, особо бдительным юным химикам, которых может возмутить тот факт, что сильные электролиты (нерастворимые соли) не вошли в этот перечень, могу сообщить следующее: НЕвключение нерастворимых солей в данный список вовсе не отвергает того, что они являются сильными электролитами.

Все остальные вещества должны присутствовать в ионных уравнениях в виде молекул. Тем требовательным читателям, которых не устраивает расплывчатый термин "все остальные вещества", и которые, следуя примеру героя известного фильма, требуют "огласить полный список" даю следующую информацию.

В виде молекул записывают:

  • все нерастворимые соли;
  • все слабые основания (включая нерастворимые гидроксиды, NH 4 OH и сходные с ним вещества);
  • все слабые кислоты (H 2 СO 3 , HNO 2 , H 2 S, H 2 SiO 3 , HCN, HClO, практически все органические кислоты...);
  • вообще, все слабые электролиты (включая воду!!!);
  • оксиды (всех типов);
  • все газообразные соединения (в частности, H 2 , CO 2 , SO 2 , H 2 S, CO);
  • простые вещества (металлы и неметаллы);
  • практически все органические соединения (исключение - растворимые в воде соли органических кислот).

Уф-ф, кажется, я ничего не забыл! Хотя проще, по-моему, все же запомнить список N 1. Из принципиально важного в списке N 2 еще раз отмечу воду.


Давайте тренироваться!

Пример 2 . Составьте полное ионное уравнение, описывающие взаимодействие гидроксида меди (II) и соляной кислоты.

Решение . Начнем, естественно, с молекулярного уравнения. Гидроксид меди (II) - нерастворимое основание. Все нерастворимые основания реагируют с сильными кислотами с образованием соли и воды:

Cu(OH) 2 + 2HCl = CuCl 2 + 2H 2 O.

А теперь выясняем, какие вещества записывать в виде ионов, а какие - в виде молекул. Нам помогут приведенные выше списки. Гидроксид меди (II) - нерастворимое основание (см. таблицу растворимости), слабый электролит. Нерастворимые основания записывают в молекулярной форме. HCl - сильная кислота, в растворе практически полностью диссоциирует на ионы. CuCl 2 - растворимая соль. Записываем в ионной форме. Вода - только в виде молекул! Получаем полное ионное уравнение:

Сu(OH) 2 + 2H + + 2Cl - = Cu 2+ + 2Cl - + 2H 2 O.

Пример 3 . Составьте полное ионное уравнение реакции диоксида углерода с водным раствором NaOH.

Решение . Диоксид углерода - типичный кислотный оксид, NaOH - щелочь. При взаимодействии кислотных оксидов с водными растворами щелочей образуются соль и вода. Составляем молекулярное уравнение реакции (не забывайте, кстати, о коэффициентах):

CO 2 + 2NaOH = Na 2 CO 3 + H 2 O.

CO 2 - оксид, газообразное соединение; сохраняем молекулярную форму. NaOH - сильное основание (щелочь); записываем в виде ионов. Na 2 CO 3 - растворимая соль; пишем в виде ионов. Вода - слабый электролит, практически не диссоциирует; оставляем в молекулярной форме. Получаем следующее:

СO 2 + 2Na + + 2OH - = Na 2+ + CO 3 2- + H 2 O.

Пример 4 . Сульфид натрия в водном растворе реагирует с хлоридом цинка с образованием осадка. Составьте полное ионное уравнение данной реакции.

Решение . Сульфид натрия и хлорид цинка - это соли. При взаимодействии этих солей выпадает осадок сульфида цинка:

Na 2 S + ZnCl 2 = ZnS↓ + 2NaCl.

Я сразу запишу полное ионное уравнение, а вы самостоятельно проанализируете его:

2Na + + S 2- + Zn 2+ + 2Cl - = ZnS↓ + 2Na + + 2Cl - .

Предлагаю вам несколько заданий для самостоятельной работы и небольшой тест.

Упражнение 4 . Составьте молекулярные и полные ионные уравнения следующих реакций:

  1. NaOH + HNO 3 =
  2. H 2 SO 4 + MgO =
  3. Ca(NO 3) 2 + Na 3 PO 4 =
  4. CoBr 2 + Ca(OH) 2 =

Упражнение 5 . Напишите полные ионные уравнения, описывающие взаимодействие: а) оксида азота (V) с водным раствором гидроксида бария, б) раствора гидроксида цезия с иодоводородной кислотой, в) водных растворов сульфата меди и сульфида калия, г) гидроксида кальция и водного раствора нитрата железа (III).

1 . Составляется молекулярное уравнение реакции . Формулы веществ записываются в соответствии с правилом валентности. Рассчитываются (если необходимо) коэффициенты в соответствии с законом сохранения массы веществ.

2 . Составляется полное ионно-молекулярное уравнение . В молекулярной форме следует записывать малорастворимые и газообразные вещества, а также слабые электролиты (табл. 4.4, 4.5). Все эти вещества или не образуют в растворах ионов, или образуют их очень мало. В видеионов записывают сильные кислоты и основания, а также растворимые соли. Эти электролиты существуют в растворе в виде ионов, но не молекул.

3 . Составляется сокращённое ионно-молекулярное уравнение . Ионы, которые в ходе реакции не изменяются, сокращаются. Полученное уравнение показывает суть реакции.

Таблица 4.5

Растворимость солей кислот и оснований в воде

Примечание. Р ─ растворимое вещество, М ─ малорастворимое,

Н ─ нерастворимое, «─» ─ разлагается водой

В качестве примера решим вопрос о том, в каком случае произойдет химическое взаимодействие: если к раствору хлорида кальция добавить раствор нитрата натрия или сульфата натрия? Ответ подтвердите, написав ионно-молекулярные реакции.

Запишем молекулярные уравнения предполагаемых реакций, указав растворимость всех участников реакции (Р – растворимое,Н – нерастворимое). Все растворимые соли являются сильными электролитами.

CaCl 2 + 2NaNO 3 → Ca(NO 3) 2 + 2NaCl; CaCl 2 + Na 2 SO 4 → CaSO 4 ↓ + 2NaCl.

Р Р Р Р Р Р Н Р

В соответствии с правилами написания ионно-молекулярных уравнений сильные, растворимые электролиты запишем в виде ионов, аслабые или нерастворимые – в виде молекул.

Ca 2+ + 2Cl ‾ + 2Na + + 2NO 3 ‾ → Ca 2+ + 2NO 3 ‾ + 2Na + + 2Cl‾;

Ca 2+ + 2Cl ‾ + 2Na + + SO 4 2‾ → CaSO 4 ↓ + 2Na + + 2Cl ‾ .

В первом случае все ионы сокращаются, а во втором – сокращенное ионно-молекулярное уравнение имеет вид: Ca 2+ + SO 4 2‾ → CaSO 4 ↓, т.е. в данном случае имеет место химическое взаимодействие с образованием малорастворимого вещества. Данная реакция является практически необратимой , т.к. в обратном направлении, т.е. в сторону растворения осадка, она протекает в очень незначительной степени (рис. 4.6).

Рассмотрим реакции, приводящие к образованию слабого электролита и газа (рис. 4.7).

NH 4 Cl + KOH → NH 4 OH + KCl,

NH 4 + + Cl¯ + K + + OH¯ → NH 4 OH + K + + Cl¯,

NH 4 + + OH¯ → NH 4 OH.

Na 2 CO 3 + 2 HCl → 2 NaCl + H 2 CO 3 (H 2 O + CO 2 ),

2 Na + + CO 3 2 ¯ + 2 H + + 2 Cl → 2 Na + + 2 Cl¯ + H 2 O + CO 2 ,

2 H + + CO 3 2 ¯ → H 2 O + CO 2 .

Рис. 4.6 – Практически необратимая реакция двойного обмена с образованием осадка

Рис. 4.7 – Практически необратимые реакции двойного обмена

с образованием слабого электролита и газа

Если малорастворимые или малодиссоциирующие вещества есть и среди исходных веществ и среди продуктов реакции, то ионно-молекулярное равновесие смещается в сторону менее диссоциирующего или менее растворимого электролита.

СН 3 СООН + NaOH ↔ CH 3 COONa + H 2 O,

СН 3 СООН + Na + + OH¯ ↔ СН 3 СОО¯ +Na + + H 2 O,

СН 3 СООН + OH¯ ↔ СН 3 СОО¯ + H 2 O.

слабая кислота слабый электролит

Константа диссоциации уксусной кислоты равна около 10 –5 , а воды около 10 –16 , т.е. вода является более слабым электролитом и равновесие смещено в сторону образования продуктов реакции.

На смещении ионно-молекулярного равновесия основано растворение малорастворимого гидроксида магния при добавлении порциями раствора хлорида аммония:

Mg(OH) 2 + 2 NH 4 Cl ↔ MgCl 2 + 2 NH 4 OH,

Mg(OH) 2 + 2 NH 4 + + 2 Cl¯ ↔ Mg 2+ + 2 Cl¯ + 2 NH 4 OH,

Mg(OH) 2 + 2 NH 4 + ↔ Mg 2+ + 2 NH 4 OH.

Введение дополнительных порций иона NH 4 + смещает равновесие в сторону продуктов реакции.

>> Химия: Ионные уравнения

Ионные уравнения

Как вам уже известно из предыдущих уроков химии, большая часть химических реакций происходит в растворах. А так как все растворы электролитов включают ионы, то можно говорить о том, что реакции в растворах электролитов сводятся к реакциям между ионами.

Вот такие реакции, которые происходят между ионами, носят название ионных реакций. А ионные уравнения – это, как раз и есть уравнения этих реакций.

Как правило, ионные уравнения реакций получают из молекулярных уравнений, но это происходит при соблюдении таких правил:

Во-первых, формулы слабых электролитов, а также нерастворимых и малорастворимых веществ, газов, оксидов и т.д. в виде ионов не записывают, исключением из этого правила является ион HSO−4, и то в разбавленном виде.

Во-вторых, в виде ионов, как правило, представляют формулы сильных кислот, щелочей, а также растворимых в воде солей. Так же следует отметить, что такая формула, как Са(ОН)2 представлена в виде ионов, в том случае, если используется известковая вода. Если же используется известковое молоко, которое содержит нерастворимые частицы Ca(OH)2, то формула в виде ионов, также не записывается.

При составлении ионных уравнений, как правило, используют полное ионное и сокращенное, то есть краткое ионное уравнения реакции. Если рассматривать ионное уравнение, которое имеет сокращенный вид, то в нем мы не наблюдаем ионов, то есть они отсутствуют обеих частях полного ионного уравнения.

Давайте рассмотрим на примерах, как записываются молекулярные, полные и сокращенные ионные уравнения:

Поэтому следует помнить, что формулы веществ, которые не распадаются, а также нерастворимые и газообразные, при составлении ионных уравнений принято записывать в молекулярном виде.

Также, следует помнить, что в том случае, если вещество выпадает в осадок, то рядом с такой формулой изображают направленную вниз стрелку (↓). Ну, а в том случае, когда в ходе реакции выделяется газообразное вещество, то рядом с формулой должен стоять такой значок, как стрелка направленная вверх ().

Давайте более подробно рассмотрим на примере. Если у нас есть раствор сульфата натрия Na2SO4, и мы к нему добавим раствор хлорида бария ВаСl2 (рис. 132), то увидим, что у нас образовался белый осадок сульфата бария BaSO4.

Посмотрите внимательно на изображение, на котором показано взаимодействие сульфата натрия и хлорида бария:



Теперь давайте запишем молекулярное уравнение реакции:

Ну, а сейчас давайте перепишем это уравнение, где будут изображены сильные электролиты в виде ионов, а реакции, которые уходят из сферы, представлены в виде молекул:

Перед нами записано полное ионное уравнение реакции.

Теперь попробуем убрать из одной м другой части равенства одинаковые ионы, то есть, те ионы, которые не принимают участия в реакции 2Na+ и 2Сl, то у нас получится сокращённое ионное уравнение реакции, которое будет иметь такой вид:


Из этого уравнения мы видим что вся сущность данной реакции сводится к взаимодействию ионов бария Ва2+ и сульфат-ионов

и что в результате образуется осадок BaSO4, даже не зависимо от того, в состав каких электролитов входили эти ионы до реакции.

Как решать ионные уравнения

И напоследок, давайте подведем итоги нашего урока и определим, как же нужно решать ионные уравнения. Мы с вами уже знаем, что все реакции, которые происходят в растворах электролитов между ионами, являются ионными реакциями. Эти реакции принято решать или описывать с помощью ионных уравнений.

Также, следует помнить, что все те соединения, которые относятся к летучим, трудно растворимым или малодиссоциированным, находят решение в молекулярной форме. Также, следует не забывать, что в том случае, когда при взаимодействии растворов электролитов не образуется ни одного из вышеперечисленных видов соединения, то это означает, что реакции практически не протекают.

Правила решения ионных уравнений

Для наглядного примера возьмем такое образование труднорастворимого соединения, как:

Nа2SО4 + ВаСl2 = ВаSО4 + 2NаСl

В ионном виде это выражение будет иметь вид:

2Nа+ +SО42- + Ва2+ + 2Сl- = BаSО4 + 2Nа+ + 2Сl-

Так как мы с вами наблюдаем, что в реакцию вступили лишь ионы бария и сульфат-ионы, а остальные ионы не прореагировали и их состояние осталось прежним. Из этого следует, что мы можем это уравнение упростить и записать в сокращенном виде:

Ва2+ + SО42- = ВаSО4

Теперь вспомним, что нам следует предпринять при решении ионных уравнений:

Во-первых, необходимо исключить из обеих частей уравнения одинаковые ионы;

Во-вторых, не следует забывать о том, что сумма электрических зарядов уравнения должна быть одинаковой, и в его правой части, и также в левой.

Статьи по теме: